
https://doi.org/10.31871/IJNTR.10.1.7 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-10, Issue-1, January 2023 Pages 01-09

 1 www.ijntr.org

Abstract— This research paper introduces a complemen- tary

cache eviction policy, “Second Encounter Eviction”(SEE),

designed to enhance traditional cache management strategies

like Least Recently Used (LRU) and First In First Out (FIFO).

The central hypothesis of SEE is that an item’s second en-

counter is a stronger indicator of its need for retention, imply-

ing a higher likelihood of future utility. The Second Encounter

Eviction (SEE) Strategy prioritizes incoming data importance,

unlike traditional cache eviction methods that focus mainly on

outgoing data significance. This method adds a new dimension

to existing strategies by incorporating a decision-making layer

that assesses the probability of future access based on previous

encounters.

Index Terms— Cache Eviction, Least Recently Used(LRU),

First-In-First-Out(FIFO), Second Encounter Eviction.

I. INTRODUCTION

 Background Information

Background Information In the dynamic world of

computing, the efficient retrieval and storage of data are

crucial. At the core of this efficiency is caching, a principle

in computer science that involves storing copies of

frequently used data in a cache, a smaller and faster memory

location. The essence of a cache’s effectiveness is deeply

rooted in the concept of temporal locality. Temporal locality

posits that data accessed once is likely to be accessed again in

the near future. This principle underpins the

decision-making process in cache management, guiding the

retention and eviction of data.

II. PROBLEM STATEMENT

Traditional cache eviction algorithms, such as Least

Recently Used (LRU) and First In, First Out (FIFO), operate

under the as- sumption of temporal locality. Based on this

concept, caches will evict data regardless of what the incoming

data is. This method can be overly simplistic, failing to

effectively capture the complexity and unpredictability of

actual data access patterns. For instance, consider the

analogy of listening to a song. When you hear a song for the

first time, there’s no certainty you will like it and want to

listen to it again. But if you choose to play a song a second

time, it implies a higher likelihood of preference, suggesting

Aryan Chowdhury, University of Manchester,

you might play it again in the future. This analogy reflects a

more nuanced view of temporal locality – that data (or

songs) accessed more than once are more likely to be

accessed again, thereby warranting re- tention in the cache.

 Purpose of the Study

This study introduces and explores the ”Second Encounter

Evic- tion Strategy” in cache management, which builds on

the premise of retaining data that has been accessed at least

twice and aims to more accurately predict future data

requests, potentially overcom- ing the limitations of

traditional eviction methods. By focusing on data that has

demonstrated repeated use, this strategy aims to better

predict and accommodate actual usage patterns, potentially

enhancing cache performance.

 Scope

The paper will delve into the theoretical aspects of the

Second Encounter Eviction Strategy, compare it with

conventional meth- ods, and then empirically evaluate its

efficacy in various scenarios. The objective is to thoroughly

assess this strategy’s impact on the efficiency of caching

systems and its applicability in modern com- puting

contexts.

III. THEORETICAL ANALYSIS

 Overview of Cache Eviction Strategies

To contextualize the development and potential of the

Second En- counter Eviction (SEE) Strategy, it is

imperative to first understand the foundational cache

eviction strategies that underpin most cur- rent caching

systems.

 Least Recently Used (LRU):

The LRU strategy operates on the principle that data not

accessed recently is less likely to be needed soon. It evicts

the least recently accessed data from the cache, offering a

balance between simplic- ity and effectiveness for a wide

range of applications.

Evolving Cache Strategies: The Integration of Second

Encounter Eviction

Aryan Chowdhury

Evolving Cache Strategies: The Integration of Second Encounter Eviction

 2 www.ijntr.org

 First In, First Out (FIFO):

FIFO is predicated on a straightforward principle: evict the

old- est data in the cache first, irrespective of its access

frequency or recency. This method, while easy to

implement, often fails to ac- curately reflect the actual data

usage patterns.

 Least Frequently Used (LFU):

LFU focuses on the frequency of data access, evicting the

least frequently accessed data. By counting the number of

accesses for each block, LFU aims to retain data that is

accessed more fre- quently, proving effective in scenarios

where certain data items are repeatedly accessed over time.

 Other Strategies

In addition to these, there are several other strategies like

Most Re- cently Used (MRU) and Random Replacement

(RR), each catering to specific caching requirements and

scenarios.

 Principles Guiding Traditional Strategies

Central to these traditional strategies is the concept of

temporal locality, which posits that recently accessed data is

more likely to be accessed again in the near future. While

generally effective, this principle does not always align with

the complex and varied access patterns observed in modern

computing environments.

 Limitations of Traditional Strategies

The traditional caching methods, despite their widespread

use, ex- hibit several limitations:

 Predictability Issues:

These methods may struggle with accurately predicting

future data requests in environments characterized by

non-linear or unpre- dictable access patterns, potentially

leading to inefficient cache utilization.

 Cache Pollution:

Cache pollution, where caches are filled with infrequently

ac- cessed data, is a notable issue, especially prevalent in

LRU and FIFO strategies. LFU can mitigate this to some

extent with its fo- cus on access frequency, but it may not

effectively handle chang- ing access patterns where the

frequency of data access varies over time.

IV. DETAILED DESCRIPTION OF SEE STRATEGY

The Second Encounter Eviction (SEE) Strategy emerges as

a com- plementary approach to traditional cache eviction

strategies, aim- ing to enhance the efficiency of cache

management by addressing their limitations. This section

outlines the operational framework, principles, and

integration of SEE within the context of traditional caching

methods.

 Conceptual Framework of SEE

SEE operates on a nuanced principle: a data block that is

accessed more than once exhibits a higher likelihood of

future reuse. It com- plements traditional strategies by

introducing a distinct layer of decision-making based on

repeat access patterns. The key stages in the SEE process

are:

Initial Access: Upon the first access of a data block, SEE,

unlike traditional strategies, does not evict a block from the

cache. It marks the block for potential future prioritization.

Second Access and Beyond: The pivotal moment for SEE is

the second access of a data block. This repeated access

signifies increased importance, prompting SEE to prioritize

its retention. Subsequent accesses reinforce this decision.

 Integration with Traditional Strategies

The innovation of the Second Encounter Eviction (SEE)

Strategy lies in its unique focus on the importance of

incoming data, as opposed to traditional cache eviction

strategies which primarily concern themselves with the

significance of outgoing data. In this combined approach,

SEE operates by monitoring the access fre- quency of

incoming data blocks. Upon the first encounter of a new

data block, SEE does not immediately prioritize it for cache

retention. Instead, it marks this initial encounter and awaits

a po- tential second access. When a data block is accessed

for the sec- ond time, indicating a higher probability of

future reuse, SEE then signals the traditional eviction

strategy to adjust its eviction prior- ities accordingly. This

integration allows for a more holistic cache management

system, where decisions are informed not only by the

characteristics of the data within the cache but also by the

potential value of new data entering the cache.

V. IMPLEMENTATION OF SEE

This section outlines the specific mechanisms and logic

employed in the implementation of the Second Encounter

Eviction (SEE) Strategy, integrated within the frameworks

of traditional caching methods. The Python scripts utilized

for this implementation, along with the corresponding trace

files, are accessible for review and replication on GitHub.

https://doi.org/10.31871/IJNTR.10.1.7 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-10, Issue-1, January 2023 Pages 01-09

 3 www.ijntr.org

 Initialization and Data Structure

Cache and Seen Dictionary: The script initializes an

OrderedDict, named cache, similar to the traditional LRU

implementation. Ad- ditionally, a seen dictionary is

introduced, serving a pivotal role in tracking the access

history of each data block, represented by lines in the trace

file.

 Hashing Mechanism

Unique Identification of Data Blocks: Utilizing SHA-256

hashing through hashlib, the script generates unique

identifiers (hashes) for each data block (line) in the trace

file. This process ensures consistent and distinct referencing

of data blocks across multiple accesses.

 Trace File Processing

Sequential Data Access: The script reads each line in the

trace file sequentially, treating each line as an individual

access to a data block.

 SEE Logic Implemetation

The breakdown of the SEE logic as implemented:

 Cache Hit Check:

Upon accessing a line (data block), the first step is to check

if it exists in the cache. If the line is present in the cache, it is

classified as a cache hit, and no further action is required for

this particular access.

Figure 1: Flowchart illustrating the implementation of the

SEE strategy.

 Handling Cache Misses:

In the event of a cache miss, the next step involves assessing

the availability of space within the cache.

 Space Availability and Cache Addition:

If there is available space in the cache, the line is directly

added to the cache. This step aligns with traditional cache

strategies. Alongside adding the line to the cache, its

corresponding hash (line hash) is marked as True in the seen

dictionary, indicating its encounter.

 SEE Strategy in Full Cache Scenario:

When a cache miss occurs and there is no available space in

the cache, the SEE strategy is actively engaged. The first

check un- der this condition is to determine if the data has

been previously encountered, as indicated by the seen

dictionary.

 Decision-Based on Previous Encounters:

If the data has been seen before (i.e., line hash is True in the

seen dictionary), it is considered likely to be important. In

this case, the cache evicts the least recently used or oldest

Evolving Cache Strategies: The Integration of Second Encounter Eviction

 4 www.ijntr.org

item (depending on whether LRU or FIFO is used) to make

space for the new item.

 Handling Unseen Data:

If the data has not been seen before (i.e., line hash is False in

the seen dictionary), its line hash is set to True, but it is not

immedi- ately added to the cache. The process then moves

on to the next line without altering the current composition

of the cache.

VI. OPERATIONAL ADVANTAGES OF SEE AS A

COMPLEMENTARY STRATEGY

The integration of the Second Encounter Eviction (SEE)

Strategy with traditional cache eviction methods brings

several operational advantages to cache management. These

benefits arise from SEE’s unique focus on the access

patterns of incoming data, which com- plements the existing

strategies centered around outgoing data.

 Enhanced Predictive Accuracy:

A key operational benefit of the Second Encounter Eviction

(SEE) Strategy is its enhanced predictive accuracy in cache

manage- ment. Traditional cache eviction strategies, such as

Least Re- cently Used (LRU) and Least Frequently Used

(LFU), predomi- nantly rely on recency or frequency-based

logic to make eviction decisions. While these methods are

effective in certain scenar- ios, their predictive accuracy can

be limited, especially in envi- ronments where data access

patterns do not conform to consistent trends of recency or

frequency.

SEE augments these traditional strategies by focusing on the

access patterns of incoming data, specifically tracking when

data is accessed for the first and second times. This

approach provides a more informed basis for cache eviction

decisions. Unlike tradi- tional methods that might

prematurely evict data based on a single access metric, SEE

recognizes the potential future value of data based on

repeated access.

When a data block is accessed a second time, SEE interprets

this as a strong indicator of its relevance and utility,

suggesting a higher likelihood of future reuse. This second

access serves as a critical signal in the SEE strategy,

informing the cache system that the data block is more than

just a transient piece of information. By integrating this

insight into the eviction decision process, SEE enhances the

overall predictive accuracy of the cache management

system.

 Optimized Cache Utilization and Reduced Pollu- tion:

A significant advantage of the Second Encounter Eviction

(SEE) Strategy is its ability to optimize cache utilization and

significantly reduce cache pollution. Cache pollution, a

notable issue where caches are filled with infrequently

accessed data, can compromise the effectiveness of a cache

system. Traditional caching strategies, although effective in

many scenarios, often do not adequately dis- criminate

against data that is rarely accessed, leading to this kind of

pollution. SEE addresses this challenge by prioritizing data

that has been accessed more than once. This focus on repeat

access ensures that the cache reflects the current needs and

usage patterns more accurately. By giving priority to data

that is accessed repeat- edly, SEE effectively filters out stale

or infrequently accessed data that might otherwise occupy

valuable cache space.

 Dynamic Responsiveness to Random Access Pat- terns:

One of the standout advantages of integrating the Second

En- counter Eviction (SEE) Strategy with traditional cache

eviction methods is its enhanced adaptability to random

access patterns. Traditional strategies, while efficient in

certain scenarios, can be less effective in environments

where data access patterns are un- predictable or random. In

such cases, these strategies might fre- quently evict data that

could soon become relevant again, leading to increased

cache misses and reduced overall efficiency. In con- trast,

SEE’s approach of monitoring the access history of incom-

ing data and prioritizing data blocks that are accessed a

second time allows it to adapt more effectively to random

access patterns. For instance, in a scenario where data

access does not follow a predictable trend, a traditional

cache might repeatedly evict and reload the same data

blocks, incurring a significant performance cost. SEE

mitigates this issue by recognizing and retaining data blocks

upon their second access, which is a strong indicator of their

recurring utility, despite the randomness of access.

VII. LIMITATIONS IN THE SEE STRATEGY

While the Second Encounter Eviction (SEE) Strategy offers

sig- nificant advantages in enhancing cache management, it

is also im- portant to acknowledge its limitations.

Understanding these limi- tations is crucial for effectively

deploying the strategy and for fur- ther research and

development in this area.

 Increased Computational Overhead:

One of the primary limitations of SEE is the additional

computa- tional overhead required to track the access

history of each data block. Monitoring and recording the

first and second accesses of all incoming data necessitates

extra processing and memory re- sources. This added

complexity can potentially offset some of the performance

gains obtained through improved cache management,

https://doi.org/10.31871/IJNTR.10.1.7 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-10, Issue-1, January 2023 Pages 01-09

 5 www.ijntr.org

especially in systems where resource constraints are a

critical fac- tor. However, this limitation can be alleviated to

some extent by employing efficient data structures, such as

hash maps. Hash maps can be used to quickly and efficiently

determine whether a data block has been seen before. With

hash maps, the time complex- ity of searching for a data

block’s access history is generally re- duced to O(1),

making the process much more efficient compared to other

data structures that might have higher time complexities for

search operations.

 Initial Cache Misses for Important Data:

A significant limitation of the Second Encounter Eviction

(SEE) Strategy is the potential for initial cache misses,

particularly for crucial data during its first access. SEE’s

foundational principle requires a data block to be accessed

twice before being prioritized for retention in the cache.

This criterion, while effective in iden- tifying data with

recurring utility, may inadvertently overlook the importance

of data during its initial access.

In practical terms, this means that even critical data, when

ac- cessed for the first time, is not immediately secured in

the cache under the SEE Strategy. It must undergo a

’proving period’ where its necessity for retention is

established through a second access. This approach can lead

to cache misses initially, as the strategy does not account for

the immediate value or importance of newly accessed data.

However, it’s important to note that this limitation might not

always apply, especially in scenarios where the cache is not

yet fully occupied. In situations where the cache has

available space, or when it is relatively empty at the start,

important data accessed for the first time may still be

retained without needing to pass the second-access

criterion. In these cases, the cache has the capacity to

accommodate new data without immediately resorting to

evic- tion based on SEE’s repeat access rule.

This nuance suggests that the impact of SEE’s limitation

regard- ing initial cache misses can vary depending on the

current state of the cache. In a cache that is not fully utilized

or at the beginning of its operation, the likelihood of

retaining first-time accessed, im- portant data increases,

thereby reducing the risk of initial cache misses.

 Potential for Misidentification of Data Impor- tance:

While the second access of a data block is a strong indicator

of its importance, this criterion is not infallible. There may

be in- stances where a data block is accessed twice due to

coincidental or non-representative reasons, leading SEE to

incorrectly prioritize its retention.

VIII. EXPERIMENTATION

This section outlines the experimental setup and procedures

em- ployed to evaluate the Second Encounter Eviction

(SEE) Strat- egy’s performance in cache management. The

experiments were designed to assess the efficacy of SEE in

various simulated envi- ronments, using a range of trace

files to represent different data access patterns and

workloads.

 Experimental Setup

1. Objective: To systematically evaluate and compare the

per- formance of the SEE strategy with traditional cache

evic- tion methods (LRU and FIFO) under diverse workload

con- ditions.

2. Trace Files Used: The experiment utilized several trace

files, including ones that showed mixed results and

additional ones specifically created to highlight the

potential benefits of the SEE strategy.

3. Cache Configuration:

Cache Size: The experiments were conducted with cache

sizes ranging from 32 to 4096 blocks to maintain

consistency across tests.

Block Size: A standard block size of 1 was used for all sim-

ulations to allow for comparative analysis.

Cache Architecture: The cache architecture employed in

these simulations was fully associative, allowing any data

block to be placed in any cache line.

4. Performance Metrics: The experiment focused on cache

hits and misses as primary metrics. Additionally, the time

taken to complete each simulation was recorded to gauge

the SEE strategy’s operational efficiency.

5. Data Recording: Results for each trace file were meticu-

lously documented under each cache strategy for accurate

and consistent comparison.

 Testing Procedure

Baseline Evaluation: Initial tests using traditional LRU and

FIFO strategies were conducted with each trace file to

establish baseline performance metrics. Testing with SEE:

Subsequent simulations implemented the SEE strategy

integrated into LRU and FIFO, em- ploying the same trace

files for consistency. Comparative Analy- sis: Results

obtained from the SEE-modified strategies were com- pared

against the baseline to discern any performance enhance-

ments or differences.

Evolving Cache Strategies: The Integration of Second Encounter Eviction

 6 www.ijntr.org

 Replicability and Transparency

All scripts and trace files used in the experiment are

available on GitHub for review and replication, ensuring

transparency and en- abling further research by the

academic community.

IX. RESULTS AND DISCUSSION

 Trace File Characteristics

Each trace file was constructed with a unique set of

characteristics intended to challenge and highlight the

strengths and weaknesses of the cache eviction strategies:

1. Trace1: Designed with a pattern to emulate regular

access with a moderate level of temporal locality, providing

a bal- anced test for both standard and SEE-enhanced

strategies.

2. Trace2: Featured a higher degree of temporal locality,

fa- voring strategies like LRU SEE that prioritize data based

on second encounters.

3. Trace3: Included a mix of frequent and infrequent data

ac- cesses, aiming to simulate a more volatile access pattern

that could benefit from SEE’s prioritization mechanism.

4. Trace4: Presented a scenario with large volumes of data

and a complex access pattern, testing the scalability and

effi- ciency of the caching strategies at higher cache sizes.

5. Custom: This trace is tailored to underscore the

advantages of SEE (Second Encounter Eviction). Initially, it

fills a cache of size 4096, creating a baseline for data

retention. Following this, it introduces 4096 unique lines

that are accessed only once, effectively polluting the cache

under traditional evic- tion strategies. The trace then revisits

the initial set of 4096 lines, illustrating how standard

methods might struggle with a polluted cache, while SEE

adeptly maintains the essential data by prioritizing entries

based on their second encounter.

 Trace File Result Analysis

1. Trace1 Result

• LRU: Displayed consistent cache hits across all cache

sizes.

• LRU SEE: Demonstrated a gradual increase in cache hits

with an increase in cache size, aligning with the larger cache

capacity.

• FIFO: Showed slight improvements in cache hits as cache

size increased.

• FIFO SEE: Marked improvement over standard FIFO,

especially at larger cache sizes.

A. Figure 2: column chart Cache Hits vs. Cache Size on

trace 1.

1. Trace2 Result

• LRU: Similar to Trace1, LRU showed uniform

perfor- mance across all cache sizes.

• LRU SEE: Notable improvements in performance,

with the highest gains at larger cache sizes.

• FIFO: Incremental improvements with increasing

cache sizes.

• FIFO SEE: Significantly higher cache hits at larger

cache sizes compared to standard FIFO.

Figure 3: column chart Cache Hits vs. Cache Size on trace 2.

2. Trace3 Result

• LRU: Increased cache hits with larger cache sizes,

showcasing adaptability to larger caches.

• LRU SEE: Again outperformed standard LRU,

partic- ularly at larger cache sizes.

• FIFO: Increased cache hits with cache size, but less

significant compared to SEE strategies.

• FIFO SEE: Outperformed standard FIFO, especially

at higher cache sizes.

3. Trace4 Result

https://doi.org/10.31871/IJNTR.10.1.7 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-10, Issue-1, January 2023 Pages 01-09

 7 www.ijntr.org

Figure 4: column chart Cache Hits vs. Cache Size on trace 3.

• LRU and LRU SEE: Both strategies scaled well with

cache size, with LRU SEE slightly outperforming

LRU.

• FIFO and FIFO SEE: Increased performance with

cache size. FIFO SEE marginally outperformed FIFO.

B. Figure 5: column chart Cache Hits vs. Cache Size on

trace 4.

4. Custom Result

• LRU and FIFO Performance: Both LRU and FIFO

strategies exhibited identical performance patterns in

the custom trace file scenario, with zero cache hits

across all cache sizes. This outcome highlights a shared

limitation in managing the cache effectively un- der

conditions designed to simulate data pollution.

• LRU SEE and FIFO SEE Improvement: The integra-

tion of the SEE strategy with both LRU and FIFO

demonstrated a similar trajectory of improvement. Ini-

tially, both strategies started with no cache hits at

smaller cache sizes. However, as the cache size in-

creased, there was a notable escalation in cache hits,

culminating in peak performance at the largest cache

size. This trend signifies the efficacy of the SEE en-

hancement in combating the challenges of cache pol-

lution, thereby augmenting the capabilities of both tra-

ditional caching strategies in more complex scenarios.

X. DISCUSSION

The results from the experiments indicate that the SEE

strategy, when combined with both LRU and FIFO, can lead

to perfor- mance improvements, particularly in

environments with larger cache sizes.

Figure 6: column chart Cache Hits vs. Cache Size on trace

4.

 TRACE FILE-SPECIFIC FINDINGS

Optimal Conditions for SEE: Trace2 and Trace4, which

contained more complex and realistic access patterns,

highlighted conditions under which SEE provides tangible

benefits, such as in scenarios with large datasets and a mix

of repetitive and non-repetitive data accesses. Impact of

Access Patterns: Trace1 and Trace3 demon- strated the

nuanced impact of different access patterns on the per-

formance of SEE, with the strategy showing incremental

improve- ments as the complexity of the access patterns

increased.

 EXEC. TIME VS. CACHE SIZE

Figure 7: graph of Exec. Time vs. Cache Size

Execution Time Analysis

A crucial aspect of cache strategy performance is the

execution time, which was measured across various cache

sizes for each trace file. The data indicates a correlation

between cache size and exe- cution time for all caching

strategies.

1. Trace1 and Trace2 Execution Times

For Trace1, execution times were minimal, increasing

slightly with cache size for all strategies. LRU SEE

Evolving Cache Strategies: The Integration of Second Encounter Eviction

 8 www.ijntr.org

and FIFO SEE exhibited higher times, with FIFO SEE

having the most significant increase. In Trace2, a

similar trend was observed with a slightly more

pronounced increase in execu- tion times across all

strategies, especially for SEE-enhanced strategies,

reflecting the added computational overhead.

2. Trace3 Execution Times

The execution times for Trace3 were considerably

higher

compared to Trace1 and Trace2, suggesting more complex

data patterns. LRU and FIFO showed comparable times,

while LRU SEE and FIFO SEE had marginally higher times,

with FIFO SEE showing the most efficiency at larger cache

sizes.

3. Trace4 Execution Times

Trace4 presented the highest execution times. While LRU and

FIFO maintained consistent times, LRU SEE and FIFO SEE

experienced a gradual increase, with LRU SEE showing the

highest times. Interestingly, FIFO SEE ended up having the

lowest execution times at larger cache sizes.

The collected data reveal that incorporating the SEE strategy

incurs additional execution time across cache sizes. This

over- head, while present, remains relatively small,

underscoring SEE’s potential for practical application

without significant performance penalties.

 Implications for Cache Strategy Selection

The results suggest that the selection of an optimal cache

eviction strategy should be informed by the specific

characteristics of the workload, as evidenced by the

performance variations across the different trace files. While

SEE can enhance cache performance in scenarios with high

temporal locality and large cache sizes, stan- dard LRU and

FIFO may suffice in more predictable or less de- manding

environments.

XI. FUTURE RESEARCH DIRECTIONS

The evaluation of the Second Encounter Eviction (SEE)

strategy has provided promising results, indicating the

potential for per- formance improvements in cache

management. However, several avenues remain unexplored

where further research could yield ad- ditional insights and

optimizations. The following directions are proposed for

future research:

1. Different Cache Architectures: Future work should assess

the impact of SEE on various cache architectures, like direct-

mapped and set-associative, focusing on spatial locality and

conflict misses.

2. Multi-Level Cache Hierarchies: Investigating SEE’s

perfor- mance across multi-level caches (L1, L2, L3) can

reveal its role in complex caching systems and its inter-level

interac- tions.

3. Varying Block Sizes: Research into how different block

sizes influence SEE’s effectiveness will help tailor it to the

varying granularity of application data.

4. Integration with Eviction Strategies: Examining the

integra- tion of SEE with strategies like Random Replacement

or Adaptive Replacement Cache may yield hybrid models that

optimize cache eviction.

5. Computational Efficiency: Addressing the computational

overhead of SEE is essential, potentially through advanced

data structures or algorithms that reduce its complexity.

XII. CONCLUSION

In conclusion, while the SEE strategy holds promise for

enhanc- ing cache performance in specific scenarios, its full

potential is yet to be unlocked. The initial findings encourage

continued ex- ploration and development, aiming to achieve a

balance between performance improvement and

computational efficiency.

REFERENCES

[1] K. Zhou, Y. Zhang, P. Huang, H. Wang, Y. Ji, B. Cheng, and

Y. Liu, ”LEA: A Lazy Eviction Algorithm for SSD Cache in Cloud

Block Storage,” in 2018 IEEE 36th International Con- ference on

Computer Design (ICCD), 2018, pp. 569-572, doi:

10.1109/ICCD.2018.00091.

[2] C.-L. Su and A. M. Despain, ”Cache Design Trade-Offs for Power and

Performance Optimization: A Case Study,” in Proc. of the 1995 Int.

Symp. on Low Power Design (ISLPED ’95), Dana Point, CA, USA,

1995, pp. 63-68, doi: 10.1145/224081.224093.

[3] A. Silberschatz, G. Gagne, and P. B. Galvin, Operating Sys- tem

Concepts, Enhanced eText, 10th ed. Hoboken, NJ, USA: Wiley, 2018,

ISBN: 9781119320913.

[4] A. Chowdhury, ”SEE-Implementation,” GitHub repository,

2023. [Online]. Available:

https://github.com/ArCh12312/SEE-Implementation. [Accessed:

31-Dec-2023].

