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  Abstract - Do we can control of the autonomous robot motion 

in the more different potential fields? As the answer to this 

question here it is presented a few methods of the control of the 

autonomous robots motion in the following fields: a) radial mass 

density field, b) two-potential electromagnetic and gravitational 

field, c) control of micro-nano robots motion in multi-potential 

field, d) quantization of autonomous robot motion in 

electromagnetic and gravitational fields and e) control of 

nano-robots motion in multi-potential field. The other 

possibilities of application of the radial mass density theory to 

autonomous robot motion are also discussed. The application of 

the presented theory to control of the micro-nano robot motion 

is also pointed out. Finally, using the previous methods one can 

precisely control of the autonomous robot motions on and in the 

Earth, Ocean and Air. 
   

 

   Index Terms — Mobile robots, Multipotential field, Micro - 

nano robots, Quantization of robot trajectory. 

 

I. INTRODUCTION 

The autonomous robots have a very large application area. 

The first one is the application in the precise production 

processes. The second one is in the micro and nano scales as it 

is in medicine for cell manipulation, drug delivery, medical 

image acquisition and non-invasive intervention. For that 

application, one can use the electrical, or chemical actuated 

robots [1,2-5]. The magnetic soft robots have the advantages 

because of the fast response, unlimited endurance, and no 

obstruction restrictions [6]. Here, among the others, the 

motion of the autonomous robots is described in the radial 

mass density field. This field is in the region from the minimal 

radius, with the maximal radial mass density, ρr max , and 

maximal radius with the minimal radial mass density,  

ρr min. Between these two limited values one can chose n points 

(n=1,2,..nmax ). In the case of the precise robot motion the 

number nmax should be bigger. On the contrary, for the less 

precise robot motion, the number nmax may be smaller. The 

very important consequence of the solution of the field 

equations by including gravitational energy-momentum 

tensor (EMT) on the right side of the field equations 7-10 is 

that the gravitational field exhibit repulsive (positive) and 

attractive (negative) gravitational forces.  

  The time transition between quantum states in gravitational 

field is present in [11]. In order to precisely follow the desired 

trajectory of the autonomous robot motion one can include the 

new Relativistic Radial Density Theory (RRDT) [12]. The 

particle transition and correlation in quantum mechanics is 

discussed in [13]. Independent position control of two 

identical magnetic micro-robots in a plane using permanent 
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magnets and magnetically powereful micro robots is 

presented in [14]. This application represents the new 

approach to the medical revolution epohe. Magnetically 

powered micro-robots are discussed in [15,16].  Further, the 

robust control of micro-robot motion is presented in [17]. The 

global positioning of robot manipulators with mixed revolute 

and prismatic joints is discussed in [18]. In the case of vehicle 

dynamics control, a conjugate gradient-based BPTT-like 

optimal control algorithm has been applied in [19,20]. The 

same algorithm can also be adapted to control of the 

autonomous robot (micro-nano robot) motion in combined 

electromagnetic and gravitational fields. A robust motion 

control with antiwindup scheme for electromagnetic actuated 

microrobot using time-delay estimation is presented in [21].  

   Further, the quantization of the electromagnetic and 

gravitational fields is discussed in [22]. The two indipendet 

position control of two indentical microrobots motion in a 

plane are realized by using rotating permanent magnets [23]. 

Magnetically powered microrobots and the robust motion 

control, with antiwindup scheme for electromagnetic actuated 

microrobots, are presented in [24] and [25], respectively. 

Robotics assisted in the minimally invasive surgery process is 

ilustrated in [26]. Design of a novel haptic joystick for the 

teleoperation of continuum-mechanism-based medical robots 

is presented in [27]. In this reference a novel mechanism with 

series of coupled gears, that aims for the control of continuum 

robots for medical applications is pointed out.  Positioning 

control of robotic manipulators subject to excitation from 

non-ideal sources is discused in [28]. Further, a robust motion 

control with antiwindup scheme for electromagnetic actuated 

microrobot using time-delay estimation is presented in [29]. 

Independent position control of two identical magnetic 

microrobots in a plane using rotating permanent magnets is 

discused in [30]. Magnetically powered microrobots is 

pointed out in [31]. A robust motion control with antiwindup 

scheme for electromagnetic actuated micro-robot , by using 

time-delay estimation, is presented in [32]. Further, in [33] it 

is pointed out the robotic assisted minimally invasive surgery. 

Design of a novel haptic joystick for the teleoperation of the 

continuum mechanism based medical robots is presented in 

[34]. The positioning control of robotic manipulators subject 

to excitation from non-ideal sources is ilustreted in [35]. The 

so colled tractor-robot cooperation in the heterogeneous 

leader-follower approach is discussed in [36]. In the reference 

[37] one can pointed out how the indor positioning systems of 

mobile robots can be applied. The analysis and experimental 

evaluation of the single-leg lower-limb rehabilitation robot 

can applied is point out in [38]. Finaly in the reference [39] 
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the multi robot task scheduling for the consensus based fault 

resilient intelligent behaviour in the smart factories is 

discussed. 

  Here it is started with the presentation of the control of 

dynamics of autonomous robot motion in radial mass density 

field. In order to solve of the dynamics of the autonomous 

robot motion the concept of the external linearization of the 

nonlinear control of the robot motion is applied.  It follows by 

the evaluation of autonomous robot motion in two-potential 

electromagnetic end gravitational field. The next part of this 

article gives the method of the quantization of autonomous 

robot motion in the combination of the electromagnetic and 

gravitational fields. In development of the control of the 

autonomous robot motion a concept of the generic state and 

related orthogonal state are emploed. Finally the control of 

the nanorobots motion in multipotential field is discussed. In 

this section it is pointed out that the nanorobotics is the 

multidisciplinary field with atomic and molecular-sized 

objects. Therefore sometimes it is called molecular robotics.  

 II. CONTROL OF DYNAMICS OF AUTONOMOUS ROBOT MOTION IN 

RADIAL MASS DENSITY FIELD 

  The problem of the nonlinear control of autonomous robot 

motion here is discussed as the function of the maximal radial 

mass density value. In order to simplify the related 

calculation, here it is started with the concept of the external 

linearization of the nonlinear control of the robot motion in 

the radial mass density field. In that case, in the closed 

regulation loop, one obtains the linear behavior of the 

hole-system. Thus, the problem of the robot position control 

in the radial mass density field can be started by the 

calculation of the control of the error vector, e(t). This vector 

is a function of the radial mass density, r , and can be 

presented by the relations:   
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Here n=1,2,..,nmax and nmax = r max / r min . Thus in (1) the 

subscript w denotes the desired robot motion, while the 

variables without this subscript present the real autonomous 

robot motion. Further, Fp is a potential force, Ft is a time - 

variation force, Fi is interaction force and N is the related 

connection parameter. At the same time the relations (1) also 

describes the canonical differential equations of autonomous 

robot motion in the combination of the electromagnetic and 

gravitational fields. Vector rw(t) is the desired (nominal) 

acceleration of the autonomous robot motion. 

  Now following the idea of the external linearization, one can 

introduce the next substitution:      
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Here u(t) is the internal control vector of autonomous robot 

motion in radial mass density field. Further, applying the 

phase state-space variables, (z1 z2 z3)
T
 in (1), we obtain the 

related state-space model of the robot motion in the radial 

mass density field:  
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and         
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In (4), parameters A and B are constant matrices with 

dimension (6x6) and (6x3), respectively. Here, it is supposed 

that the disturbances in state-space model of the robot motion 

in the radial mass density field (3 ) and (4) are of the initial 

condition types. In order to eliminate the control error of the 

autonomous robot motion in the radial mass density field 

(caused by the disturbances) one can introduce the following 

internal control:  
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        (5) 

Here, K is the state space controller, Z is control error, Fp is 

the potential force, Ft is time variable force, FI is an 

interaction force, N is a constant and c is the speed of the light 

in vacuum. Including the internal control relations (3) and (4) 

into (5), one obtains the related equation of the potential force 

as function of radial mass density value in the linear form:      
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  Now starting from the previous relations one can generate 

the new equations of the potential forces Fp :     
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It is follows by the inclusion of the control potential force, 

Fcp , that is derived from the artificial control field with 

potential control energy Uc . After inclusion of (7) into (6), 

one obtains the nonlinear control of the autonomous robot 

(micro – nano robot) motion in the multi-potential field as the 

function of the maximal radial mass density value,   denoted 

by 
r max
 :          
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             (8)                                                                                                                    

Now, using (8), the control of the nonlinear system is solved 

in the radial mass density field by employing the concept of 

the external linearization as the function of the maximal radial 

mass density value
r max
 . 
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III. DYNAMICS OF AUTONOMOUS ROBOT MOTION IN TWO 

POTENTIAL  ELECTROMAGNETIC  AND  GRAVITATIONAL  FIELD  

  The general approach to control of the dynamics of the 

autonomous robot motion in radial mass density fields (8), 

can also be applied to the two-potential electromagnetic and 

gravitational field. In this sense, let an autonomous robot be 

an electricaly charged particle with charge q and rest mass m0 

that is moving with a non-relativistic velocity (v << c). Here it 

is also assumed that the gravitational field is produced by the 

spherically symmetric non charged body with mass M and 

total potential energy U. For calculation of the autonomous 

robot motion in the two potential radial mass density fields 

one can use the following relation: 
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Here Ve and Vg are the related scalar potentials of the 

electromagnetic and gravitational radial mass density fields, 

respectively. Parameter G is the gravitational constant and r is 

the radius as distance between the autonomous robot and 

center of the mass M. Here n=1,2,..,nmax , nmax = r max / r min .  

Now applying (9) and using the notations, (Ee,He) for an 

electromagnetic field and (Eg,Hg) for the gravitational field, 

one can generate the vector equation as the explicit functions 

of the Lorentz forces: 
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         (10) 

The parameters Ee, Eg, He and Hg are vectors described by 

the relations: 
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In this example, an autonomous robot is a particle with charge 

q and rest mass m0. Further, let the autonomous robot interacts 

with both electromagnetic and gravitational radial mass 

density fields. In that sence the relations (10) and (11) 

describe the dynamic of the autonomous robot motion in 

two-potential electromagnetic and gravitational field. The 

components of the vector Ee and Eg can be calculated by 

using the following equations: 
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and: 
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The components of vectors Ae, Ag, He and Hg in (12) and 

(13) are given by the following relations:    
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and:  

             

  
   

   

  
   

   

x xz z

y y

y yx x

z z

e ge g

e g

e ge g

e g

A AA A
H , H ,

z x z x

A AA A
 H , H .

x y x y
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Applying (14) and (15) to the canonical differential equations 

of the autonomous robot motion in the two-potential radial 

mass density field, and using 0 r max minm r  one obtains the 

control error model of the autonomous robot motion as a 

function of the maximal radial mass density value: 
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and: 
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In (16) and (17) rw(t) is the vector of the desired acceleration 

of the autonomous robot motion. The subscript w denotes 

desired values of the related variables. The next step is the 

application of the concept of the external linearization in 

order to transform (16) into the new relation: 
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Here u(t) is the internal control vector and n=1,2,..nmax is the 

number of the robot steps from the minimal to the maximal 

radiuses in radial mass density field. From (17) and (18), one 

obtains the related equivalent of the linear control error model 

of the autonomous robot motion in the combined 

electromagnetic and gravitational radial mass density field 

given by (14) and (15), respectively. Now the phase 

state-space variables of the system (2) are determined by 
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applying the relation (3). The presented state-space model of 

an autonomous robot motion is given in the matrix form (6).  

  In order to eliminate the control error of an autonomous 

robot motion, caused by disturbances of the initial condition 

types, one can introduce internal control in the form (7). 

Applying (7) to (18), one obtains the new relation as the 

function of the maximal radial mass density value in the form: 

                                    

 
1

v

1
v

  
     

 

  
   

 

r max min

e w I I II II e

r max min

g g

r
E r ( t ) K Z K Z H

nq c

r
               E H .

nq c

   (19)  

  Now, let the electric field Ee is consisting of the two electric 

components Ee = Ede + Ece. Here Ede is a disturbance 

electric field that is caused by the influence of the 

two-potential field to the motion of the autonomous robot in 

radial mass density field. The component Ece is an artificial 

electric control field that should control autonomous robot 

motion in the two potential field. Including Ee from (19), one 

obtains the nonlinear electric control of the autonomous robot 

motion in the two-potential radial mass density field, as the 

function of the maximal radial mass density r max : 
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Taking into account the relation (10), the canonical 

differential equations of the autonomous robot motion, in the 

two-potential radial mass density field, can be rewritten as a 

function of the maximal radial mass density value: 
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Applying the nonlinear control Ece from (20) to the nonlinear 

dynamical model of the autonomous robot motion (21), one 

obtains the closed-loop system in the linear form: 
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Thus, the equation (20) is the relation for the nonlinear 

control, which in the closed loop with a nonlinear canonical 

differential equations of autonomous robot motion (21), 

results in the linear behavior of the hole system (22). On that 

way the problem of control of the autonomous robot motion in 

the combination of an electromagnetic and gravitational 

radial mass density field, has been solved by employing the 

so-called concept of the external linearization. This is very 

important for application to the micro and nano robots in the 

applications to the drag delivery across the human body. Of 

cose the robots in the combination of the electromagnetic and 

gravitational radial mass density field can also be applied to 

the large areas of production engineering systems.  

 

IV. QUANTIZATION OF AUTONOMOUS ROBOT MOTION IN 

ELECTROMAGNETIC AND GRAVITATIONAL FIELDS 

  In order to quantize the mobile robot (micro-nano robot) 

motion in the combination of electromagnetic and 

gravitational fields, one can start with the related equations 

[22]: 
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Here rmin is a minimal radius, Lgmin is a minimal length, c is the 

speed of the light in vacuum, Mp is Planck’s mass, Lp is 

Planck’s length, Mg is a gravitational mass, Ve is the electrical 

potential, q is the electrical particle charge, G is a 

gravitational constant and ULmin is a potential energy at the 

minimal length. The total energy is maximal at the minimal 

length and is limited by the electrical potential energy qVe. 

Using Planck’s mass and Planck’s length it is calculated the 

new parameter κ. This parameter is the energy conservation 

constant with value κ = 0.99993392118. 

  The quantization of the combined electromagnetic and 

gravitational fields can be realized by using the procedure 

given in [22]: 
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Here Ld is the minimal distance between two quantum points, 

H^ is the energy uncertainty and T  is the shortest time 

during which the average value of a certain physical quantity 

is changed by an amount equal to the standard deviation or 

uncertainty of time. This time should satisfy the condition, 

given in [13]: 
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The quantum dynamical evolutions (24,25) are starting from a 

generic state  and is finishing in the related orthogonal 

state. The quantitative measure of temporal quantum state 

transfer efficiency is denoted by ηt and by the shortest 

physically possible time mint in order to obtain the quantum 

transition between two quantum states. Parameter CQS  can be 

stated as the time, effectively spent by the controlled system 

or control algorithm. Parameter     is the shortest 
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physically possible time that is spent for the transition to the 

state  . This is the minimum transition time between two 

quantum points. For determination of the minimal time in 

quantum dynamical evolution, one should use time depended 

Hamiltonian. In that case, the time-energy uncertainty relation 

can be used. The application of the previous theory to the 

mobile robot (micro-nano robot) quantum motion can be 

started with the minimal distance Ldmin between two quantum 

states (24, 25). Let the maximal transition velocity between 

two quantum points is less than the speed of the light in a 

vacuum. In that case, the minimal distance Ldmin and the 

maximal number of quantum points nmax in the region 

2Lmin-Lmin are determined by the relations: 

    
 

min

min min

min max

max 2
min

0

2
,

2

,

.
(1 )

g g

d

g p

de l

L L
v c L v n

v

GM GM
n

L vqV U

m

 
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




 
 


 

 









   

                                                                                         (26) 

For the precise motion of the autonomous robot (micro/nano 

robot) one can introduce desired velocity v and minimal 

distance Ldmin . In that case, from (26) one obtains the value 

of the maximal number of quantum points nmax in the region 

2Lmin-Lmin : 

  

6
6

min

max 2
min

10
     10 , ,

2

2
2.90533 .

( / 2)(1 )


 

 


d

p

d

m
v L m

s

GM
n

L v

   (27) 

From (27) one can see that the minimal distance between two 

quantum states (step of autonomous robot or micro-nano 

robot moving) is equal to 0.5·10
-6 

m = 0.5 microns and the 

maximal number of quantum points nmax is less or equal to 

2.90533. 

 

V. CONTROL OF NANOROBOTS MOTION IN MULTIPOTENTIAL 

FIELD 

 

  The nanorobotics is the multidisciplinary field with atomic 

and molecular-sized objects and therefore sometimes is called 

molecular robotics [23]. The state of the art in nanorobotics 

has been presented in [24]. The one of approaches for 

building useful devices from nanoscale components is 

presented in [25]. Generally, nanorobots have various 

mechanical components such as nanogears built primarily 

with carbon atoms in a diamondoid structure. The second line 

of nanorobotics research involves manipulation of nanoscale 

objects with macroscopic instruments and related potential 

fields. The all of these instruments are collectively known as 

Scanning Probe Microscopes (SPMs). For more information 

on SPM technology one can see the references [26]. The 

spatial region in nanorobotics is the bionanorobotics [27]. 

The main goal in this region is to develop novel and 

revolutionary biomolecular machine components that can be 

assembled and form multi-degree of freedom nanodevices 

[27]. These bionanodevices should be able to apply forces 

and manipulate objects in the nanoworld, transfer information 

from the nano to the macro world, receive the information 

from the macro world and also be able to travel in the nano 

environment.  In order to control nanorobots in mechanics, 

electronics, electromagnetic, photonics, chemical and 

biomaterials regions we have to have the ability to construct 

the related artificial control potential fields. Thus, the first 

step in designing the control dynamics for nanorobots is the 

development of the relativistic Hamiltonian that will include 

external artificial potential field. This Hamiltonian has been 

derived and presented in [28]. 

  Let the non-relativistic approximation of the Hamiltonian   

for a nanorobot motion in a multipotential field is given by the 

relation:  

      

22
yx

x y2 2
2

0
2

0
z

z 2

v Uv U
p p

c c1
m c U.

2m
v U

p
c

   
     
       
  

   
  

H
(28) 

Here m0 is a rest mass of a nanorobot, c is a speed of the light 

in a vacuum, px, py, and pz, as well as vx, vy and vz are 

momentums and velocities, respectively, in x, y, and z 

directions and U is a total potential energy of a nanorobot in a 

multipotential field. In the relation (28) U  is a potential 

energy of the nanorobot in the j-th potential field. In the case 

where there are no quantum mechanical effects one can 

employ classic Hamiltonian canonic forms for designing 

equations of the nanorobot motion:  

    

x y z

x

y z

p , p , p , x ,
x y z p

y , z .
p p

   
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   

 
 
 

   

 

H H H H

H H
  (29)   

Now, one can define the so called interaction terms of a 

nanorobot motion in a multipotential field: 

           Ix = vxU/c,      Ix = vyU/c,     Iz = vzU/c       (30) 

It follows the definition of the interaction forces as functions 

of the interaction terms: 

   
x y z

y yz x z x
I I I

I II I I I
F , F , F .

y z z x x y

    
     
       

(31)  

The next definition is related to the time-varying forces as the 

functions of the interaction terms:                           

           
x y z

yx z
t t t

II I1 1 1
F , F , F .

c t c t c t

 
     

  
 (32)    

Finally, one can define the potential forces as the function of 

the total potential energy of a nanorobot in a multipotential 

field:                                               

               
x y zp p p

U U U
F , F , F .

x y z

  
     

  
     (33) 

   Applying (1) to (4) and including the relations (5), (6), (7) 

and (8), one obtains the compact form of the canonical 

differential equations of the nanorobot motion in a 

multipotential field as the functions of the mentioned forces:  
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(34) 

Following the previous consideration one can introduces the 

following vectors: 

     

x y z x y z x y z

T T T

T T T

p p p p I I I I t t t t

       X x y z , X x y z , X x y z ,

F F F F , F F F F , F F F F .

  

       
     

      
  (35) 

Including the vectors (35) into the relations (34) one 

generates the vector-matrix form of the canonical differential 

equations of the nanorobot motion in a multipotential field:    

         

0 p t I

0 z y
1

m X F F NF , N z 0 x .
c

y x 0

 
 
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 

  (36)  

Thus the relation (36) can be applied to the control of the 

nanorobots motion in the multipotential field. 

 

VI. CONCLUSION 

  The presented theory is applied to the control of the robot 

motion in the multy potential fields. In that sense it is started 

with the control of the autonomous robot motion in the radial 

motion from the minimal to the maximal gravitational 

radiuses and vice-verse. It is shown that the Planck’s and 

gravitational parameters can be described as the functions of 

the radial mass density values. In that case the maximal radial 

mass density occurs at the minimal gravitational radius of the 

related mass. On the other hand, the minimal radial mass 

density is happened at the maximal radius of the related mass. 

Further, the quantization of the autonomous robot 

(micro-nano robot) motion in the combination of 

electromagnetic and gravitational fields is presented. In the 

case of the precise motion control of the autonomous robots in 

the gravitational radial direction one can use the variable step 

of the robot motion. The presented methods of the control of 

the autonomous robot motion can be applied on and in the 

Earth, Oceans and Air. 
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