
https://doi.org/10.31871/IJNTR.8.1.7                                International Journal of New Technology and Research (IJNTR) 

                                                                                  ISSN: 2454-4116, Volume-5, Issue-6, June 2019 Pages 35-41 

 

                                                                                      35                                                                                 www.ijntr.org 

 

 

Abstract—This paper constructs a class of quadratic-type 

Lyapunov functions for the study of axial flow compressor 

dynamics. Based on Moore-Greitzer’s model proposed in 1986, 

conditions for local system stability is carried out via the 

proposed Lyapunov function for the compression system 

without considering the dynamics of stall wave. The domain of 

attraction for compression system is also analytically estimated. 

A sufficient condition is also obtained to guarantee the global 

stability of some un-stalled normal operating equilibria. Case 

study for both compressors with cubic axisymmetric 

characteristics and axisymmetric characteristic proposed by 

Liaw and Abed in 1991 are discussed to verify the usage of the 

analytical results. Numerical simulations for both cases are also 

obtained to demonstrate the main results. 

 
Index Terms—Axial flow compressor, Lyapunov function, 

stability.   

 

I. INTRODUCTION 

  In the recent years, the study of axial flow compressor 

dynamics has attracted lots of attention mainly due to the 

requirement of high system performance. It is known that two 

types of unstable phenomena might occur while the 

compressor operates near its maximum achievable pressure 

rise. Those nonlinear behaviors might limit the performance 

and/or operation of gas turbine jet engines. Under either of 

the two unstable conditions, a moderate disturbance can 

result in system instability so that the compression system 

might experience a large amplitude oscillation 

(corresponding to the so-called “surge”) or jump into a very 

inefficient operation at constant mass flux with low 

pressure-rise (corresponding to the so-called “stall”) (e.g., 

[1]-[4]). Among those previous studies, in 1976 Greitzer 

proposed a four-dimensional lumped parameter model to 

describe the behavior of surge and stall behavior [1]. A 

third-order differential equation model is then proposed by 

Moore and Greitzer in 1986 to capture the major 

characteristics of both surge and rotating stall phenomena 

occurring in axial flow compression systems [2].  

Based on Moore and Greitzer's model [2], the stall 

behavior of axial flow compression system was found to be 

attributed to the occurrence of the so-called “transcritical 

stationary bifurcation” [3] or the so-called “pitch-fork 

stationary bifurcation” [5] depending on the representation of 
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system state. In practical applications, a surge (or stall) line is 

usually set up to provide a safe operational boundary for the 

usage of compressors. Such a conservative trade-off unduly 

restricts the capability of compressor and/or engine. Various 

types of control schemes have been proposed to allow 

compressors to operate safely beyond the surge line and thus 

enhance system efficiency (e.g., [6]-[13]). Among those 

designs, several robust control schemes had been applied to 

deal with system uncertainties by assuming the axisymmetric 

characteristic to be a specific cubic function (e.g., [6], 

[11]-[13]. 

It is known that the determination of stability regions by 

using Lyapunov analysis plays an important role such as in 

stabilization and robustness analysis (e.g., [12]-[15]). Among 

those studies, Simon [14] constructed an energy function for 

the one-dimensional model of the axial compressor dynamics 

to develop a nonlinear robust control law. The domain of 

attraction was also loosely discussed. Mansoux et. al. [15] 

proposed a quadratic type Lyapunov function for the analysis 

of two-dimensional model of the compressor dynamics. In 

particular, the domain of attraction was semi-empirically 

determined. In our previous study [5], we had presented the 

study of the three-dimensional stall behaviour in axial flow 

compressors by using Moore-Greitzer’s model proposed in 

[2]. However, no results regarding the domain of attraction 

for the corresponding equilibrium has been discussed in the 

current studies. In this paper, we will extend previous results 

to focus on the study of the two-dimensional behavior in 

compressor dynamics by using the same model without 

considering the dynamics of stall wave. A preliminary result 

of this study was presented in [16]-[17] by using extensive 

computer simulations with the help of the code AUTO [18] 

for the axial flow compressor dynamics with respect to the 

variations of system parameters  and .B Instead of using 

numerical approach in [16]-[17], in this study we propose 

another approach by the construction of Lyapunov functions 

for determining the local stability of system equilibrium and 

the corresponding domain of attraction. 

This paper is organized as follows. In Section II, the 

mathematical model of compression systems introduced by 

Moore and Greitzer in 1986 is recalled. It is followed by the 

construction of a class of quadratic Lyapunov function for the 

1986 year's model without considering the dynamics of stall 

wave. Both of local stability criteria and the domain of 

attraction are analyzed and estimated for axial compressors. 

Numerical simulations will be given in Section IV for 

compressors with cubic axisymmetric characteristics and 

axisymmetric characteristic proposed by Liaw and Abed in  

[16] to verify the usage of the analytical results. Finally, 
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Section V gives the main conclusions. 

 

Notation: 

A    amplitude of the first angular mode of rotating stallwave; 

mC nondimensional compressor mass flow rate; 

P nondimensional plenum pressure rise; 

    angle along circumference; 

    a geometry-related constant; 

W   semi-width of cubic characteristic 

ssC  nondimensional axisymmetric compressor characteristic; 

F    inverse function of nondimensional throttle pressure rise; 

B    Greitzer B parameter, proportional to rotor speed and 

plenum volume; 

     control parameter of throttle function; 

II. AXIAL FLOW COMPRESSOR DYNAMICS 

In this section, we will recall the mathematical model of 

axial flow compressor dynamics proposed by Moore and 

Greitzer in 1986 [2]. A previous result regarding the study of 

rotating stall [5] is also briefly reviewed, which will then be 

used in the sequel. 

Conceptually, a compression system majorly comprises 

inlet duct, compressor, exit duct, plenum, and throttle as 

depicted in Fig. 1. In 1986, Moore and Greitzer [2] extended 

their previous study of [1] to propose a third-order differential 

equation model for describing the nonlinear behavior of surge 

and rotating stall phenomena appearing in axial flow 

compressor dynamics. By adopting the notations of [5], the 

proposed model in [2] can then be represented as 

2
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dA
C m WA

dt W
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
                   (2) 

2

1
{ ( , )},    

4
C

d P
m F P

dt B



                                           (3) 

where the system variables in Eqs. (1)-(3) can be referred to 

the notations defined above. It is known (e.g., [3]) that the 

inverse function of nondimensional throttle pressure rise is 

usually taken as 

                                 1/2( , ) ( ) .F P P                           (4) 

Besides, the axisymmetric compressor characteristic 

( )ssC  characterizes the steady pressure rise across the 

compressor and is often known to be an S-shaped function 

(e.g., [2]-[3]). An example is depicted in Fig. 2.  

Suppose ( )ssC   is a smooth function. The equilibrium 

points of system (1)-(3) can then be solved as follows. It is 

observed from Eq. (1) that 0A  results in 
dt

dA =0. Let  

),,0( 000 Pmx C    denote an equilibrium point for the 

system (1)-(3). By letting the time derivatives in (2)-(3) be 

zero, we then have 0 0( )ss CP C m   and 0 0 0( , )Cm F P  for 

0A with a given 0.   That means system equilibrium 

of the un-stalled operation (i.e., 0A ) will be at the 

intersection point of the throttle line and the compressor 

characteristic. Note that, the compression system (1)-(3) may 

have stalled equilibrium (i.e., 0).A To adopt the results 

from [5] as shown in Fig. 2, the throttle line intersects the 

compressor characteristic at a unique point when the throttle 

is widely open (i.e.,  is large). In addition, the equilibrium 

mass flow is found to be decreased while the value of   is 

getting smaller. As shown in Fig. 2, solid line stands for 

stable system equilibria while dot-line stands for unstable 

ones. Both of local stability criteria and conditions for the 

existence of rotating stall (i.e., 0)A was obtained in [5] as 

recalled in the next two lemmas. 

Lemma 1. Suppose ( )ssC   is a smooth function and F is a 

strictly increasing function in each of its two variables. The 

equilibrium point 0x  of system (1)-(3) will be asymptotically 

stable (resp. unstable) if 0( ( )) 0ss CC m   (resp. 

0( ( )) 0).ss CC m    

Lemma 2. Suppose ( )ssC   is a smooth function and F is a 

strictly increasing function in each of its two variables. Then 

the system (1)-(3) will exhibit a pitchfork stationary 

bifurcation at the equilibrium point 0x  with respect to small 

variation of  if 0( ( )) 0ss CC m   and " 0( ( )) 0.ss CC m    

It is noted that the condition of determining the 

characteristic of the bifurcated solutions had been obtained in 

[5]. A quadratic feedback control law was also proposed to 

avoid the jumping behavior, which is caused by the 

occurrence of subcritical pitchfork stationary bifurcation, in 

compressor dynamics. 

III. CONSTRUCTION OF LYAPUNOV FUNCTIONS 

It is known that there are two types of unstable phenomena 

might occur while the compressor operates near its maximum 

achievable pressure rise. A moderate disturbance can result in 

system instability so that the axial flow compression system 

might either experience a large amplitude oscillation 

corresponding to the so-called “surge” or jump into a very 

inefficient operation at constant mass flux and  low pressure 

rise corresponding to the so-called “stall.” In our previous 

study [5] as recalled in Section II, we had presented the study 

of the three-dimensional stall behaviour in axial flow 

compressors by using Moore-Greitzer’s model [2]. However, 

no results regarding the domain of attraction for the 

corresponding equilibrium has been discussed. In this paper, 

we extend those results to focus on the study of the 

two-dimensional behavior in compressor dynamics by using 

the same model as presented in Eqs. (1)-(3) without 

considering the dynamics of stall wave. Instead of numerical 

approach used in [16]-[17], in the following we consider 

another scheme by the construction of Lyapunov functions 

for determining the local stability of system equilibrium and 

the estimating the corresponding domain of attraction.  

It is observed from Eq. (1) that 0A is an invariant 

manifold for system (1)-(3). Thus, Eqs. (1)-(3) can then be 

reduced as a two-dimensional system for the study of 

non-stall behaviour as given below (with 0)A : 

     ( ) ,C
ss C

dm
C m P

dt
  


                                                       (5) 

2

1
{ ( , )}.

4
C

d P
m F P

dt B



                                            (6) 

Now, we consider the local stability of system (5)-(6). 
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Denote  0 0 0,
T

cx m P  an equilibrium point of system 

(5)-(6) for given
0.  It is clear to have 

0 0( )ss CP C m   and 0 0 0( , ).Cm F P  Let  1 2,
T

x x x  

with 
0

1 c cx m m    and 
0

2 .x P P    

Then we have the deviation model at the equilibrium 0x as 
0 0

1 1 2( ) ( )ss cx C m x P x                                            (7) 

0 0 0
2 1 22

1
{( ) ( , )}.

4
cx m x F P x

B
                          (8) 

First, we recall the Lyapunov stability criterion from (e.g., 

[19]) as discussed below. 

Let 0x   be an equilibrium point for the system given by 

( ),x f x  for .nx R                                        (9) 

Then we have the next stability result for system (9) as 

recalled in the next lemma. 

Lemma 3. The equilibrium point 0x  for system (9) is 

asymptotically stable if there exists a local region nD R  

containing 0x   and a continuous differentiable function 

( )V x such that the two conditions hold: (i) ( )V x  is a locally 

positive definite function, i.e., (0) 0 and ( ) 0,V V x   for 

all x D  with 0x  ; and (ii) ( ) ( ) 0,   V x x DV x x       

with 0.x   Moreover, the local region D denotes the 

so-called “domain of attraction” (DoA). 

To facilitate the derivations, we make the following 

hypotheses. 

Hypothesis 1. Suppose ( )ss CC m  and ( , )F P  are smooth 

functions and satisfy the following assumptions: (i) There 

exists a continuous region 1S R such that ( ) 0ssC x  for 

all 1;x S  and (ii) For a given 
0, there exists a continuous 

region 2S R such that  0 , 0F y  for all 2.y S  Here, 

 0 ,F y denotes the first derivative of function F with 

respect to y.  

Hypothesis 2. Suppose ( )ss CC m  and ( , )F P  are smooth 

functions and satisfy the following assumptions: (i) For a 

given 
0,cm there exists a continuous region 3S R  containing 

0,cm such that 0 0{ ( ) ( )} 0ss c ss cC m C m       for all   with 

0
3( ) ;cm S   and (ii) For given

0 and
0,P there exists a 

continuous region 4S R  containing
0P  such that 

0 0 0 0{ ( , ) ( , )} 0F P F P          for all   with 

0
4( ) .P S    

Note that, the notation R  in the above two hypotheses 

denotes the set of real number. 

Choose a Lyapunov function candidate as given by 

2 2 2
1 2 1 2

1
( , ) ( 4 ).

2
V x x x B x                                             (10) 

It is clear from (e.g., [19]) that 1 2( , )V x x is a positive definite 

function for all 2
1 2( , ) .x x R  We then have the time 

derivative of the function V as follows: 

2
1 2 1 1 2 2

0 0
1 1

0 0 0 0
2 2

( , ) 4

               = { ( ) ( )}

                  { ( , ) ( , )}.

ss c ss c

V x x x x B x x

x C x m C m

x F P x F P 

 

  

     

  

         (11) 

   By using Taylor series expansion, we can have the next 

stability result. 

Lemma 4. The equilibrium point 0x of system (5)-(6) is 

asymptotically stable if ' 0 0 0( )<0 and '( , ) 0.ss cC m F P    

Proof: 

By Taylor series expansion, we have  
0 0 ' 0

1 1( ) ( )+ ( )ss c ss c ss cC x m C m C m x                               (12) 

and 0 0 0 0 0 0
2 2( , ) ( , ) '( , )F P x F P F P x                   (13) 

for all 0
1 2( , ) ( ).x x x Here, 0( )x denotes a local 

neighborhood of the equilibrium point 0.x  

Eq. (11) can then be rewritten as  
0 2 0 0 2

1 2 1 2( , ) '( ) '( , )ss cV x x C m x F P x                     (14) 

 It is clear that 1 2( , ) 0V x x   for all 0
1 2( , ) ( )x x x   with   

1 2( , ) (0,0).x x  The result of the lemma can then be implied 

by Lyapunov stability criteria recalled in Lemma 3.              

 

Remark 1. The result obtained in Lemma 4 agrees with that 

in [10] by using system eigenvalues approach.  

Note that, the domain of attraction (DoA) 0( )x  in 

general is not easy to obtain from Lemma 4. In the following, 

we will propose two different approaches for the estimation 

of DoA. Detains are given below. 

Next, we recall the so-called “mean value theorem (MVT)” 

(e.g., [20]) as given below, which will be used to estimate the 

region of the DoA.  

 

Lemma 5. Suppose a real valued function ( )f x is 

differentiable on an interval 1 2[ ,  ]I x x R@  with 

1 2.x x Then there exists a point 1 2[ ,  ]x x  such that 

       1 2 1 2( ) ( ) '( ) ( ).f x f x f x x                               (15) 

 

Suppose Hypothesis 1 holds. Then from Lemma 5 we have 
0 0 0

1 1 1 1( )= ( )+ '( )ss c ss c ss cC x m C m C m x x                     (16) 

and  
0 0 0 0 0 0

2 2 2 2( , )= ( , ) '( , + )F P x F P F P x x           (17) 

for some 1 2, [0,  1]   . 

Now, we can rewrite Eq. (11) as  
0 2 0 0 2

1 2 1 1 1 2 2 2( , ) ( ) '( , + ) 0ss cV x x C m x x F P x x      & &  (18) 

for all 1 1x S and 2 2.x S  

    The result given below is readily implied from Lemma 3. 

Theorem 1. Suppose Hypothesis 1 holds. The equilibrium 

point 0x of system (5)-(6) is then asymptotically stable with 

the DoA 0
1( )x defined by 

0
1 1 2 1 2 1( ) {( , ) | ( , )x x x V x x C @ with 

0
1 1( )cm x S &  

and 
0

2 2( ) },P x S                                      (19) 

where 1 2 1( , )V x x C denotes the level curve of largest value 

1C on the region 1 2S S  with 0x as the reference point. 

 



A Lyapunov Function for the Dynamical Study of Axial Flow Compressor Dynamics 

 

                                                                                      38                                                                                 www.ijntr.org 

Remark 2. The result given in Lemma 4 can be induced from 

that of Theorem 1. 

Next, we consider the case of which Hypothesis 2 holds. 

By the assumptions of Hypothesis 2, it is clear from Eq. (11) 

to have  

1 2( , ) 0V x x &                                                        (20) 

for all 1 3x S and 2 4.x S  

    We then have the next result from Lemma 3. 

Theorem 2. Suppose Hypothesis 2 holds. Then the 

equilibrium point 0x of system (5)-(6) is asymptotically stable 

with the DoA 0
2( )x defined by 

0
2 1 2 1 2 2( ) {( , ) | ( , )x x x V x x C @  with 

0
1 3( )cm x S &  

and 
0

2 4( ) },P x S                                        (21) 

where 1 2 2( , )V x x C denotes the level curve of largest value 

2C on the region 3 4S S  with 0x as the reference point. 

Remark 3. The result given in Lemma 4 can also be induced 

from that of Theorem 2. 

Suppose ( )ssC   is a smooth function and F is a strictly 

increasing function in each of its two variables. We then have 

the next global stability result from Theorem 2. 

Corollary 1. Suppose ( )ssC   is a smooth function and F is a 

strictly increasing function in each of its two variables. The 

equilibrium point 0x  of system (5)-(6) will be globally 

asymptotically stable if condition (i) of Hypothesis 2 holds 

for 3 .S R   

IV. NUMERICAL EXAMPLES 

In the following, we will adopt two axisymmetric 

compressor characteristics to demonstrate the usage of the 

results proposed in Theorems 1 and 2. One is the cubic model 

from [5] as shown in Fig. 2 with the definition given in (22) 

below, and the other is from [16] as depicted in Fig. 3.  

3( ) 1.56 1.5( 1) 0.5( 1)ss C C CC m m m       .                  (22) 

As discussed in Section II, the Moore and Greitzer’s model 

[1] is majorly employed to describe the three-dimensional 

dynamics of rotating stall. As recalled in Lemma 1, the linear 

stability of the axisymmetric equilibrium is stable if  
0( ( )) 0.ss CC m   The result obtained in Lemma 4 above for 

the two-dimensional model agrees with that in Lemma 1 

recalled from [5]. As stated in Remarks 2 and 3, the local 

stability conditions given in Lemma 4 can also be induced 

from either Theorem 1 or Theorem 2. The key difference 

among those two results is the estimation of the domain of 

attraction DoA for the given system equilibrium. From 

nonlinear system point of view, the domain of attraction for 

stable system equilibrium may vary as the value of system 

parameters  and B changes. When the domain of attraction 

becomes finite, shrinks and disappears, emergences of 

multi-equilibria and/or limit-cycle type of oscillations may 

occur as presented in [5]. In the following, the numerical 

analysis tool Matlab is employed to unveil the domain of 

attraction DoA for the given system equilibrium with respect 

to the variation of system parameters  and .B   

In the following, the inverse function of nondimensional 

throttle pressure rise ( , )F P  is taken from Eq. (4) for 

numerical study. It is clear to see that the function 

( , )F P  is strictly increasing function for all 

0 and >0.P   That means the condition (ii) of Hypothesis 

1 or Hypothesis 2 is satisfied with 2 4 { | 0}S S x x  .  

Now, we focus on the feasibility study of the two 

axisymmetric compressor characteristics. First, we consider 

the case of which the axisymmetric compressor characteristic 

( )ssC  is defined in Eq. (22). It is observed from Fig. 2 that we 

have the peak value 2.56MP  of ( )ssC  at 2.0P
cm  for 

=1.25. Besides, it is also found that ( ) 0ssC x  for all 

1 { | }.P
cx S x x m   This implies that condition (i) of 

Hypothesis 1 holds.  

For checking the condition (i) of Hypothesis 2, let 

 0 0 0,  
T

cx m P  be an equilibrium point of system (4)-(5). It 

is observed from Fig. 2 that we have condition (i) of 

Hypothesis 2 holds for all   with 
0

3( )cm S   where 

0 0
3 { | ,  with  and ( ) }.L L L

c c c ss cS x x m m m C m P       (23) 

Thus, the results given in Theorems 1 and 2 can then be 

applied to the compression system (5)-(6) with the cubic 

model of (22) for the estimation of the DoA. It is known from 

Lemma 4 and Fig. 2 that the local stability of system 

equilibrium 0x can be guaranteed while it lies on the pre-stall 

region for 1.25 1.463  or the un-stalled normal region for 

1.463.   In the following, we choose four cases for 

numerical study of which 
0 1.4,  1.463,  1.6  and 5, 

respectively, with 0.5.B  Details are discussed below. 

To facilitate the demonstration of numerical results, in the 

following simulations we use the green curve and the orange 

curve to represent the boundary of the estimated DoA 
0

1( )x  and 0
2( )x  defined in Theorem 1 and Theorem 2, 

respectively. In addition, the pink dot-dashed line denotes the 

time response for the third-order system (3)-(5) with initial 

0.5,A while the blue dot-dashed line denotes the time 

response for the two-dimensional system (7)-(8) with initial 

0,A respectively. Besides, (0)x denotes the initial value. 

For the case of which 
0 1.4,  we have the equilibrium 

point 0 (2.21,2.4899) and 1.7752.L
cx m   Time responses 

for both of three-dimensional system (1)-(3) and two- 

dimensional model (5)-(6) with three different initials are 

shown in Fig. 4. It is observed from Figs. 4(a) and 4(b) that 

the state trajectories will go to the system equilibrium 0x as 

predicted by Theorems 1 and 2 for both of three-dimensional 

system (1)-(3) and two-dimensional model (5)-(6) with 

0.5A and 0,A respectively. Besides, the time response 

with the initial outside the estimated DoA might also 

approach the equilibrium point 0x as depicted in Fig. 4(c). It 

is due to the fact that the estimated DoA from given 

Lyapunov function only contains the sufficient region. 

Similar scenarios are shown in Figs. 5 and 6 with 
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0 (2.28,2.43),  x   1.69L
cm  for

0 1.463   and 

0 (2.411,2.271),  x    1.52L
cm   for 

0 1.6,   respectively. 

It is interesting to note that we have semi-globally 

asymptotical stability instead of globally asymptotical 

stability for the equilibrium point 0x with large value of 

0, say 
0 5.  Time responses given in Fig. 7 do 

demonstrate the result predicted in Corollary 1. The reason 

for semi-global stability instead of global stability is that 

condition (i) of Hypothesis 2 holds for all 00 c cm m   and F 

is a strictly increasing function for 0P  only. 

Next, we consider the case of which the axisymmetric 

compressor characteristic ( )ssC  is defined in Fig. 3. As 

observed from Fig. 3, we have the peak value 1.252MP  of 

( )ssC  at 0.4648P
cm  for =0.4154.  In addition, it is found 

that ( ) 0ssC x  for all 1 { | }P
cx S x x m   which implies 

that condition (i) of Hypothesis 1 holds. 

Similarly, from Fig. 3 that we have condition (i) of 

Hypothesis 2 holds for all   with 
0

3( )cm S   where 

3S defined in Eq. (23) above. Thus, the results given in 

Theorems 1 and 2 can also be applied to the compression 

system (5)-(6) with the compressor model depicted in Fig. 3 

for the estimation of the DoA.  

In the following, four cases are selected for numerical 

study of which 
0 0.43,  0.4421,  0.45  and 1, respectively.  

In the first three cases we choose 0.4B  and the last one 

with 0.2.B   For simplicity and without loss of generality, 

in this case we only consider the numerical simulations for 

the second-order model. Details are discussed below. 

Similar scenarios as those for the first case study of cubic 

characteristic can also be found in Figs. 8-11. Here, we have 
0 (0.48,1.24)x   and 0.457L

cm   for
0 0.43,   and  

0.455L
cm   for 

0 0.442,   0 (0.4989,1.2291)x   and 

0.4547L
cm   for

0 0.45,   respectively. In addition, we 

have semi-globally asymptotical stability for 
0 (0.8785,0.772)x   with 

0 1   as depicted in Fig. 11. 

Note that, it is observed in Figs. 8(d) and 8(e) that the timing 

trajectories might either go to a surge behavior or approach 

another system equilibrium with different initial conditions. 

Those two phenomena are attributed to the occurrence of 

multi-equilibrium in the pre-stall region.  

V. CONCLUSIONS 

In this study, we have proposed a class of Lyapunov 

function for deriving the local stability of the 

two-dimensional axial flow compressor dynamics. The result 

agrees with the one in [10]. In addition, the domain of 

attraction for the stable system equilibrium is also estimated 

in terms of the system characteristic. Numerical results have 

demonstrated the usage of the proposed schemes, which 

might give a guide for the determination of the so-called 

``surge line" in the practical applications. 

REFERENCES 

[1] E. M. Greitzer, “Surge and rotating stall in axial flow compressor, Part 

I: Theoretical compression system model,” ASME J. Engineering for 

Power, 1976, pp. 190-198. 

[2] F. K. Moore, and E. M. Greitzer, “A theory of post-stall transients in 

axial compression systems: Part I--Development of equations,” ASME 

J. Engineering for Gas Turbines and Power, vol. 108, 1986, pp. 68-76. 

[3] F. E. McCaughan, “Application of bifurcation theory to axial flow 

compressor instability,” ASME J. Turbomachinery, vol. 111, 1990, pp. 

426-433. 

[4] E. H. Abed, P. K. Houpt and W. M. Hosny, “Bifurcation analysis of 

surge and rotating stall in axial flow compressors,” Proc. 1990 

American Control Conference, San Diego, 1990, pp. 2239-2246. 

[5] D.-C. Liaw and E. H. Abed, “Active control of compressor stall 

inception: a bifurcation-theoretic approach,” Autumatica, vol. 32, 

1996, pp. 109-115. 

[6] M. Krstic, D. Fontaineand, P. V. Kokotovic, and J. D. Paduano, 

“Useful nonlinearities and global stabilization of bifurcation in a model 

of jet engine surge and stall,” IEEE Transactions on Automatic 

Control, vol. 43, 1998, pp. 1739-1745. 

[7] N. A. Chaturvedi, and S. P. Bhat, “Output-feedback semiglobal 

stabilization of stall dynamics for preventing hysteresis and surge in 

axial-flow compressors,” IEEE Transactions on Control Systems 

Technology, vol. 14, 2006, pp. 301-307. 

[8] D. Fontaine, S. Liao, J. Paduano, and P. V. Kokotovic, “Nonlinear 

control experiments on an axial flow compressor,” IEEE Transactions 

on Control Systems Technology, vol. 12, 2004, pp. 683-693. 

[9] M. M. Haddad, J. R. Corrado, and A. Leonessa, “Fixed-order dynamic 

compensation for axial flow compression systems,” IEEE Transactions 

on Control Systems Technology, vol. 10, 2002, pp. 727-734. 

[10] D.-C. Liaw, Y.-H. Huang, and W.-C. Chung, “Linear state feedback 

design for surge control of axial flow compressor dynamics,” Journal 

of Marine Science and Technology, vol. 22, 2014, pp. 352-361.  

[11] D.-C. Liaw, and J.–T. Huang, “Fuzzy control for stall recovery of 

axial-flow compressor dynamics,” Journal of Control Systems and 

Technology, vol. 6, 1998, pp. 231-241. 

[12] D.-C. Liaw, and J.-T. Huang,, “Robust stabilization of axial flow 

compressor dynamics via sliding mode design,” ASME Journal of 

Dynamic Systems, Measurement, and Control, vol. 123, 1998, pp. 

488-495. 

[13] D.-C. Liaw, C.-C. Song, and J.-T. Huang, “Robust stabilization of a 

centrifugal compressor with spool dynamics,” IEEE Trans. on Control 

Systems Technology, vol. 12, 2004, pp. 966-972. 

[14] J. S. Simon, and L. Valavani, “A Lyapunov based nonlinear control 

scheme for stabilizing a basic compression system using a 

close-coupled control valve,” Proc. 1991 IEEE American Control 

Conf., Boston, MA, June 26-28 1991, pp. 2398-2406. 

[15] C. A. Mansoux, D. L. Gysling, J. D. Setiawan and J. D. Paduano, 

“Distributed nonlinear modeling and stability analysis of axial 

compressor stall and surge,” Proc. 1994 IEEE American Control Conf., 

Battimore, Maryland, June 1994, pp. 2305-2316. 

[16] D.-C. Liaw, R. A. Adomatis, and E. H. Abed, “Two-parameter 

bifurcation analysis of axial flow compressor dynamics,” Proc. 1991 

IEEE American Control Conf., Boston, MA, June 26-28 1991, pp. 

2955-2960. 

[17] D.-C. Liaw, W.-C. Lee, S.-M. Ren, and Y.-Y. Tsay, “A parametric 

study of axial flow compressor dynamics,” Proc. the 4th Pacific 

International Conference on Aerospace Science and Technology, 

Kaohsiung Taiwan, 2001. 

[18] E.J. Doedel, “AUTO: A program for the automatic bifurcation analysis 

of autonomous systems,” Congressus Numerantium, vol. 30, 1981, pp. 

265-284. 

[19] H. K. Khalil, Nonlinear Systems. Pearson, 3rd ed., 2010. 

[20] P. K. Sahoo and T. Riedel, Mean Value Theorems and Functional 

Equations. University of Louisville, Default Book Series, 1998, pp. 

25-29. 

 

Der-Cherng Liaw, Institute of Electrical and Control Engineering, 

National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 

Taiwan, R.O.C. 

Li-Feng Tsai, Institute of Electrical and Control Engineering, National 

Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, 

R.O.C.  



A Lyapunov Function for the Dynamical Study of Axial Flow Compressor Dynamics 

 

                                                                                      40                                                                                 www.ijntr.org 

 
 

Fig. 1. Schematic diagram of compression system  

 

 
Fig. 2. A cubic axial flow compressor model defined in Eq. (22) 

 

 
Fig. 3. The axial flow compressor model proposed in [] 

 
(a) 

 
(b)            (c) 

Fig. 4. Time response of P vs. Cm in the pre-stall zone for 0 1.4 :   

(a) (0) (2.4,2.5);x  (b) (0) (1.9,2.5);x  and (c) (0) (1.9,1.5).x   

  
 

 
(a) 

 
(b)            (c) 

Fig. 5. Time response of P vs. Cm in the pre-stall zone for 0 1.463:   

 (a) (0) (2.5,2.5);x  (b) (0) (1.8,2.5);x  and (c) (0) (1.8,1.4).x   

 

 
(a) 

 
(b)            (c) 

Fig. 6. Time response of P vs. Cm in the normal un-stalled zone for 

0 1.6:  (a) (0) (2.75,2.3);x  (b) (0) (1.7,2.3);x  and (c) 

(0) (1.7,1.5).x   

 
 

 

  

 

Fig. 7. Time response of P vs. Cm in the normal un-stalled  

zone for 0 5:  with initial (0) (0.5,2.5).x   

 

 
(a)            (b) 
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(c)            (d) 

 
(e) 

Fig. 8. Time response of P vs. Cm in the pre-stall zone for 0 0.43:   (a) 

(0) (0.49,1.24);x  (b) (0) (0.462,1.25);x  and (c) (0) (0.462,1.2);x   

(d) (0) (0.462,0.9);x  and (e) (0) (0.412,0.85).x   

 
(a) 

 
(b)            (c) 

Fig. 9. Time response of P vs. Cm in the pre-stall zone for 0 0.4421:   

(a) (0) (0.51,1.24);x  (b) (0) (0.462,1.24);x  and (c) (0) (0.462,1.17).x   

 
(a) 

 
(b)            (c) 

Fig. 10. Time response of P vs. Cm in the normal un-stalled zone 

for 0 0.45:  (a) (0) (0.52,1.24);x  (b) (0) (0.462,1.24);x  and (c) 

(0) (0.462,1.17).x   

 

Fig. 11. Time response of P vs. Cm in the normal un-stalled zone 

for 0 1:  with initial (0) (0.1,1.8).x   

 

 

 


