
https://doi.org/10.31871/IJNTR.7.6.31 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-7, Issue-6, June 2021 Pages 34-40

 34 www.ijntr.org

 Abstract—Problem statement: Most of hiding information

operations are performed within many of the traditional covers

such as text, image, audio and video files. These covers become

known amongst hackers where they can detect the hidden data

or extract through their experience and proficiency in this field.

The framework which was designed in this research deals with

another kind of covers, which is the portable executable file that

has (.exe) extension. Approach: The hidden method which was

used in this framework rely on the manner of embedding bit by

bit sequentially beyond the end of these files. In general, the

hidden information within these covers is not considered a

guaranteed protection. Therefore, before the hiding process, we

reinforce this information through one of symmetric encryption

algorithms, namely; Twofish. The combination occurred

between hiding and encryption techniques are due to the lack of

a typical technique that can be performing both of these

functions in a single operation. Results: This framework is

implemented by using Visual Basic.net where the findings show

that the framework is able to embed and extract all types of

files, regardless their size, even if the secret file is greater than

the cover. Conclusion: The stego file can perform normally after

the embedding process with the secret data inside where no

antivirus software can detect the hidden data.

Index Terms — Steganography, Cryptography, Information

Hiding, Twofish Algorithm, Portable Executable File.

I. INTRODUCTION

 With the emergence and development of computer science

and informatics emerged the need to find ways of securing

information so as to avoid computer hackers from stealing

data and/or sensitive information (Zaidan et al., 2009a).

Cryptography; a science that have evolve steadily over the

years, was an early technique used to overcome this and was

efficient in its role of preventing hacking into sensitive

messages. However, with the advent of global information

and communication networks, a more complex problem arose

where information of any kind are readily accessible to

anyone online. Information attackers have developed many

encryption techniques to try to decipher encrypted

information and these, even though unsuccessful, might at

times, distort information enroute their set destination (Saleh

et al., 2016). According to (Avedissian, 2008 and Zaidan et

al., 2008), this resulted to governments of some countries

preventing the usage of the communication networks for

Maysara Mazin Badr Alsaad, Faculty of Information Science and

Technology (FTSM), Universiti Kebangsaan Malaysia, 43600 Bangi,

Selangor, Malaysia.

personal use as they were losing control of encrypted

messages exchanged between various governmental

institutions and companies. More so, there was the

possibility of these texts containing encrypted information

that may be against public security and interest (Saleh et al.,

2015). This created an urgent need to find alternate technique

to hide information that would overcome the shortcoming of

the encryption model, giving rise to information technology

concealment (Steganography), which is based on a different

principle from the encryption technology, where information

are buried (Information Embedding) within other media

carrier and rendered imperceptible to hackers and attackers

and from the public domain of information users, while the

content monopoly remains “on the relevant agencies, which

alone knows how to extract the content” (Smith and

Comiskey, 1996; Clelland et al., 2007). Early sources of the

ideas of steganography began with of the Greek Herodotus

back in the 5th century BC when it was proposed that secret

messages be written on the shaved head of a messenger and

then allowing the hair to grow back before he is sent to the

destination where the information is retrieved (Daren and

Scott, 2007; Dorothy, 2006). In the olden days in countries

like Rome and Greece, messages were usually written on wax

that was poured on top of some stone tablets. If the sender of

the information/message wanted to hide the message - for

purposes of military intelligence or civil security, for instance

- they often used steganography. The wax would be shaved

off and the intended message would be written directly on the

tablet. Wax would then be poured on top of the message,

thereby hiding not just its meaning but its very existence

(Neil, 1995). In recent times, steganography has gradually

metamorphosed into the art of hiding a smaller message

within a larger one in such a way that others cannot discern

the presence or contents of the hidden message (Johnson et

al., 2006; Saleh et al., 2016). Other means that were in

common use in the 1st century AD was the use the use of

invisible ink to write messages, usually in between lines of

visible message of non-confidential nature. For example,

rabbis in those days used fruit juice, milk, urine, vinegar,

which becomes dark but visible when the written document is

exposed to heat (Zaidan et al., 2009b). In the military secret

correspondence during the 1st and 2nd world wars, a more

advanced chemical which served as ink was used to pass

secret messages. Finally, it should be noted that the senior

researcher in the area of concealment and science-based

organization is German; Johannes Trithemius (1462-1526)

and the oldest books in the area of coverage was posted by

Gaspari schott in 1665 (Zaidan et al., 2009b).

Enhanced Data Security Framework by Using a

Combination between Cryptography and

Steganography Technique

Maysara Mazin Badr Alsaad

Enhanced Data Security Framework by Using a Combination between Cryptography and Steganography Technique

 35 www.ijntr.org

II. THEORETICAL REVIEW

Steganography vs. Cryptography:

 According to (Saleh et al., 2016), the information

protection systems are grouped under their areas of function

as either steganography or cryptography or a combination of

the two. Steganography involves hiding the information in

such way that its existence will be undetectable by

unauthorized persons. Cryptography on the other hand entails

encrypting the information so that it cannot be comprehended

when discovered. Steganography and Cryptography are in

fact complementary techniques and are not mutually

exclusive (Othman et al., 2009; Naji et al., 2009). No matter

how well concealed a message is, it is always possible that it

will be discovered (Hamid et al., 2009). Equally, no matter

the strength of the algorithm used, an encrypted message,

when discovered, can be deciphered through cryptanalysis.

But the combination of steganography and cryptography

provides two important added protections:

a) In doing this, we make it far less likely that an encrypted

message will be found (Othman et al., 2009; Naji et al.,

2009).

b) On the less likely chance that the hidden message is

discovered, the hacker still faces the daunting challenge

of deciphering it.

 The table below shows comparison between

steganography and cryptography art (Usman et al., 2018):

Table 1: Comparison Between Steganography and

Cryptography Technique

Steganography Cryptography

1. Steganography is hidden

writing. The message is

there, but nobody notices it.

However, once noticed, it

can be read.

1. Cryptography is secret

writing. Anybody can see

the message, but nobody

else can read it. Usually,

this is because its letters

have been re-arranged, or

replaced by different

letters, according to some

scheme that only the sender

and receiver know.

2. Involves embedding the

message in a larger one

where it cannot be detected.

2. Involve making the

message undecipherable;

unreadable and not

understandable.

3. Message unchanged after

steganography.

3. Structure of messages

changed after encryption.

4. Final result of

steganography is

stego-media.

4. End message is cipher

text.

5. Information hidden

cannot be seen.

5. Encrypted message can

both be seen and modified

by someone else.

6. Steganography can hide

encrypted message.

6. Steganography cannot

affect encrypted

message.

7. Steganography is

relatively unknown.

7. Cryptography is an old

science and well in use.

The Challenges of Hiding Messages Multimedia Files:

 The concept of hiding information in multimedia files is

fast gaining popularity and no stranger to hackers. A

determined hacker can detect a hidden file and access the

information. The user as well faces the challenge of finding

the right size of the file to be used as a cover for the

information to be hidden. Overall, we tried to find a way to

overcome this problem using executable files as a cover for

information to be hidden which solved the problem of the size

(Avedissian, 2008; Saleh et al., 2015). An executable file has

varying sizes depending on application. Some files are 2

megabytes such as images, and other files more than 650

megabytes like operating system (windows, UNIX, etc)

(Clelland et al., 2007).

 The hidden method which will be used in this framework,

rely on the manner of embedding bit by bit sequentially

beyond the end of executable files. In general, the hidden

information within these covers is not considered a

guaranteed protection. Therefore, before the hiding process,

we reinforce this information through one of symmetric

encryption algorthims, namely; Twofish (Rachmat and

Samsuryadi, 2019).

Twofish Algorithm:

 In 1997, the National Institute of Standards and

Technology (NIST) proposed the Advanced Encryption

Standard (AES) to replace DES. Twofish is one of the several

projects that satisfy NIST design criterions, and was one of

the five candidates for AES finals. There are many

specifications helped to make it an excellent candidate to be

considered as a standard encryption algorithm through

several aspects, which are (Reyes et al., 2018; Neha and

Kaur, 2016):

 A128-bit symmetric block cipher

 Key lengths of 128-bit, 192-bits and 256-bits

 No weak keys

 Efficiency, both on the Intel Pentium pro and other

software and hardware platforms.

 Flexible design e.g. accept additional key lengths, be

implementable on a wide variety of a stream cipher,

hash function and MAC.

 Simple design, both of facilitates case of analysis and

ease of implementation.

 Additionally, I imposed the following performance

criteria on my design:

 Accept any key length up to 256 bits.

 Encrypt data in less than 500 clock cycles per block on

an Intel Pentium, Pentium pro, and Pentium II, for a

fully Optimized version of the algorithm.

 Not capable of setting up a128-bits key (for optimal

encryption speed) in less than the time required to

encrypt 32 blocks on a Pentium, Pentium pro, and

Pentium II.

 Not contain any operations that make it inefficient on

8-bits, 16-bits and 32-bit microprocessors.

 Have a variety of performance tradeoffs with respect

to the key schedule.

Brief Description of the Twofish Cipher:

 Twofish uses a 16-round foisted network for computation

(Scheier et al., 1998). The diagram below show the general

structure of the Twofish block cipher (Rachmat and

https://doi.org/10.31871/IJNTR.7.6.31 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-7, Issue-6, June 2021 Pages 34-40

 36 www.ijntr.org

Samsuryadi, 2019).

Fig. 1: General Structure of Twofish Block Cipher

 The Twofish structure has encryption and decryption

circuits that are almost similar which permits the cipher to be

done in an area cut nearly in half (Rachmat and Samsuryadi,

2019). To decrypt, one has to reverse the order of the internal

keys used for encrypting the message. The Fistel network

used for the computation is made up of a basic block known

as F-function, a key reliant function which has objective

property that allows it to map the input into a specific output

(Rane, 2016). The F-function works by using it interactively

in each round to build a strong encryption algorithm that

consists of several transformation and computations as

follows (Neha and Kaur, 2016):

 g-function

 Pseudo- Hadamard Transformation

 Addition modulo 232

 The F-function, combined with some keys, uses half of

the block to create the above operations to generate an output

that is EX-ORED with the other half of the block. One half of

the block then changes places with the other half before the

next round of operations is done, but after the final stage of

the operation, each half remains in place and do not change

places (Reyes et al., 2018; Rane, 2016).

 Within the structure, each of the g-function consists of

S-boxes that are key reliant which raises its resistance to

cipher attacks. Each of these S-boxes contains permutations

q0 and q1 with an 8 bit fixed values. The input, xi, to each

S-box is of length 8 bits. Depending on the S-box and the

value of xi, the value of xi is inputted with the value of yi as

follows:

y0 = s0(x0) = q1 [q0[q0[x] XOR s0,0] XOR s1,0]

y1 = s1(x1) = q0 [q0[q1[x] XOR s0,1] XOR s1,1]

y2 = s2(x2) = q1 [q1[q0[x] XOR s0,2] XOR s1,2]

y3 = s3(x3) = q0 [q1[q1[x] XOR s0,3] XOR s1,3]

 Where si, j (i=0, 1 and j=0...3) are bytes which are

obtained by splitting S0 or S1 into four bytes (Reyes et al.,

2018; Scheier et al., 1998). These results are multiplied by

4x4 MDS (Maximum Distance Separable) using Galois

Field, GF (28). The MDS matrix used in the Twofish is a

constant 4x4 matrix. x8+ x6+ x5+ x3+1 is the primitive

polynomial. The end result is the final output from the

g-function. The Pseudo-Hadamard Transform is a simple

mixing operation that can be implemented using least

resources in hardware (Scheier et al., 1998). Just by using two

inputs a and b, each of length 32-bit, PHT can be performed

as follows:

a’= a + b mod232

b’= a + 2b mod232

 Using the output from PHT and round keys, the addition

modulo 232 can be carried out. The Twofish cipher block also

have a special design unit called the key schedule which

generate the keys needed for input and output whitening

(K0-K7) while performing each of the 16 rounds (K8-K39)

operation and also generate the key for the S-boxes (S0-S1).

The same primitives used in the round function are used in

the key schedule for keys K0-K39 alongside 128-bit user key.

To obtain the key material for the S-boxes, the Reed Solomon

(RS) mapping is used. The keys S0, S1 are derived by using

128-bit user key to do a matrix multiplication of Galois

Field-GF (28). The primitive polynomial is x8+ x6+ x3+ x2 +1.

The RS matrix is a 4x8 matrix derived from the RS code

(Rane, 2016; Scheier et al., 1998).

Portable Executable File (PE):

 The system being proposed here is the use of a portable

executable file (PE-file) as a cover file for burying an

execution program. This subject shall be presented in two

layouts which are; executable file types and PE file layout

(Shetty and Ranjan, 2018; Namanya et al., 2019).

Executable File Types:

 Executable file types have many varieties and each is

unique to the various available operating systems. These

executable file types are (Jalab et al., 2010 - (Shetty and

Ranjan, 2018; Tian & Yang 2021).

1) DOS-MZ Executable: This format is not popular or useful

for DOS, and it cannot be run by any other version of

DOS, but can usually be run by 32-bit Windows and OS/2

versions.

2) Linear Executable (LE): This format is not used for OS/2

applications anymore, but instead for VxD drivers under

Windows 3.x and Windows 9x, and by some DOS

extenders.

3) Portable Executable (PE): This format can be run by all

versions of Windows NT, and also Windows 95 and

higher, also partially in DOS. In addition, it is supported

on all CPUs and used for device driver such as (.exe, .dll,

.obj, .sys, etc). (Namanya et al., 2019).

 So, the proposed framework in this paper uses a portable

executable file that has (.exe) extension as a cover-object to

embed the secret information inside it, due to his good

specifications which are shown above (Shetty and Ranjan,

2018).

PE File Layout:

http://www.answers.com/topic/dos-executable
http://www.answers.com/topic/vxd
http://www.answers.com/topic/windows-3-1x
http://www.answers.com/topic/portable-executable
http://www.answers.com/topic/microsoft-windows-nt
http://www.answers.com/topic/windows-95
http://en.wikipedia.org/wiki/EXE

Enhanced Data Security Framework by Using a Combination between Cryptography and Steganography Technique

 37 www.ijntr.org

In the PE-file layout, one finds two unused space. The size

of the second unused space varies from one to another

(Othman et al., 2009; Namanya et al., 2019). It has been

proposed that this unused space be taken to hide

watermark.

The significance of this proposal is to essentially help

leave room for programmer to create back doors for all of

their developed application as a solution to their myriad of

problem like forgetting of password. The implication of this

is that customer will feel unsafe as they would believe that the

programmers can hack into their system at will. Customer

would then want to hire only programmers they trust to

develop their application. The challenge for programmers

therefore is their need to show that their applications are safe

anywhere no matter the level of relationship that has been

establish with the customers. In this proposed framework, a

solution is suggested for this problem (Shetty and Ranjan,

2018; Abdulrazzaq et al., 2013; Tian & Yang 2021).

 The solution is to enclose the password in the executable

file of similar system and for the customer to then retrieve the

application himself. The system presents another challenge

because the steganography needs adequate knowledge of all

files format to determine how to hide information in the files.

This technique is difficult because there are always large

numbers of the file format and some have no way to hide

information in them (Abdulrazzaq et al., 2013; Othman et al.,

2009; Tian & Yang 2021). The typical executable file layout

is as shown in Figure 2.

 Fig. 2: Typical 32-bit Portable (.exe) File Layout

III. MATERIALS AND METHODS

The concept of the proposed framework:

 The concept of this proposed framework is to hide the

password or message beyond the executable file in such a

way that there is no task like open file, read or edit file, and

close file in the operating system that can retrieve it. The

operation, which relies on extant file handling routines, is

carried out using unique processes to developing the file

handling tasks. The process can be done remotely and it’s

well suited for networks and internet application. The concept

of the proposed framework is shown in Figure 3.

Fig. 3: Method of the Proposed Framework Concept

The feature of the proposed framework:

 This framework has the following features:

1. The cover file is the executable file and can be operated

even routinely without fear of extraction of the hidden

information. This is because the embedded message is

already hidden at the end of the file and is no longer

subject to manipulation like the executable file. The

executable file of this nature can thus be installed on the

window.

2. The hiding file is not constrained by size as information

of any size can be hidden due to the executable file

possessing property of its size being unidentifiable

during execution. So also the executable file comes in

various types like JDK which contains many sizes of

65MB, 72MB or 77MB that enable any size of the

hidden file to be embedded in it and so an attacker

cannot guess the actual size of the information hidden.

Also, the files is hidden at the end of the executable file

which has unlimited space which creates room for any

hidden file size.

3. It is very hard to retrieve the hidden information and to

know that information is hidden and is this because of

the following reasons:

i. Before hiding the information it is first encrypted

using the Twofish system which is a risk-proof

technique with a high level of flexibility. Twofish

borrows some specifications from other designs

like Pseudo-Hadamard Transform (PHT) and from

the secure and fast encryption routine (SAFER)

family of ciphers related to the earlier block cipher,

Blowfish (Reyes et al., 2018; Scheier et al., 1998).

ii. The attacker will find it very difficult to know that

information is hidden in the executable file

because he cannot guess the size of the executable

file.

iii. The hidden information would have to be

decrypted after extraction before it can be

deciphered.

4. The hidden message can be any one of the following

multimedia files types (i.e. text message, audio, video or

image) unconstrained by their size. The multimedia can

all be hidden at once within the same cover by putting

them in one file, compressing them and in turn hiding the

compressed file.

https://doi.org/10.31871/IJNTR.7.6.31 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-7, Issue-6, June 2021 Pages 34-40

 38 www.ijntr.org

Functions of the Proposed Framework:

 The detailed functionality of the proposed framework is

illustrated in this section. The procedure of the encrypting and

hiding operation is shown in Figure 4. This is followed by the

flowchart for this operation as shown in Figure 5. However,

the procedure of the decrypting and extracting operation is

presented in Figure 6. This is followed by the flowchart for

this operation as shown in Figure 7.

Input: Any type of secret files, cover file must have

(.exe) extension.

Output: Stego file.

 Begin.

 Open the cover file.

 Assign a pointer 1 to the end of cover file.

 Write the secret file name after the pointer 1.

 Assign a pointer 2 behind the hidden file name.

 Encrypt the secret file content by using Twofish

technique depending to use the name of the file

as a secret key (password).

 Write the encrypted file content beyond the

pointer 2.

 End.

Fig. 4: Procedure of Encrypting and Hiding Operation

Fig. 5: Block Flow of Encrypting and Hiding Operation

Input: Stego file that have (.exe) extension.

Output: Secret data.

 Begin (1)

 Select the stego file (.exe)

 Go to the end of (.exe) file.

 If the pointer exist.

 Begin (2) read the secret data name.

 Go to the next pointer

 Read the encrypted hidden data.

 Decrypt the secret data content by using

Twofish technique depending on the data name

as a secret key (password).

 Create a file using hiding data name.

 Write in to the created file the decrypted data.

 End (2)

Else

 Display a message (no hidden data).

 End (1).

Fig. 6: Procedure of Decrypting and Extracting

Operation

Fig. 7: Block Flow of Decrypting and Extracting

Operation

 The model of information hiding that is proposed in this

paper embeds each of the secret file name and the secret data

(message) as can be described in details in Figure 8.

Fig. 8: Model of Hiding Information Beyond the end of

(.exe) File

Enhanced Data Security Framework by Using a Combination between Cryptography and Steganography Technique

 39 www.ijntr.org

IV. FINDINGS AND DISCUSSION

Test Case Details:

 Before we do the test, should be defined the inputs that

will be used in this experiment. In fact, there are 12 types of

the cover files of different sizes. All of them are in executable

format (.exe) as shown in Table 2. This is followed by Table 3

which includes 12 files as a secret data of different sizes.

Table 2: Different Sizes and Types of Cover Files

Name of Cover File
Size of Cover File

(byte)

1 RealPlayer 818,200

2 Winamp 10,277,728

3 Yahoo! Messenger 14,816,024

4 SmartDraw 59,530,560

5 Adobe Photoshop CS 214,167,816

6 Microsoft Office 2007 305,186,800

Table 3: Different Sizes and Types of Secret Files

Name of

Secret File

Type of Secret

File

Size of Secret

File (byte)

1 Text Text Document 120,440

2 Image Bitmap Image 2,010,688

3 Audio MP3 Audio 3,597,432

4 Video MPEG Video 7,897,906

5 Compressed ZIP 25,451,987

6 Executable Application 32,685,938

Procedure of the Test:

 The procedure of the test for the proposed framework is

aims to applying 36 test cases, to embedding different types

and sizes of secret information within different sizes of the

cover files.

 The different sizes of stego files that are produced after

the encrypting and hiding process as shown in Table 4 as

well.

Table 4: Different Sizes of Stego Files After the

Encryption and Hiding Operation

* All the sizes of stego files by (byte) unite.

 Through the above table, we note the proposed

framework is able to accommodate with any size of secret

data without any limitation in the hiding process. This feature

comes based on the manner of embedding bit by bit

sequentially beyond the end of (.exe) files.

V. CONCLUSION

 The .EXE files are one of the most important files in

operating systems and in most systems designed by

developers (programmers/software engineers), and then

hiding information in these file is the basic goal for this paper,

because most users of any system cannot alter or modify the

content of these files. The challenge of this proposed

framework is to conveniently hide information in these files

such that it cannot be detected by hackers and others who

steal information for detrimental uses. A few points were

drawn as conclusion from this work:

 One challenge encountered is the suitability of the cover

file size in hiding given information whose size may be

larger. However, the hiding technique in this framework

ensure an independent relation between the size of the

cover file and that of the hidden information.

 The information to be hidden is also encrypted in this

framework to further secure the information. There is no

constraint to the number or type of files to be hidden by

this framework. It can be text message, image, audio, and

video.

 The most important beauty of this proposed framework is

that the information is buried beyond the end of the

executable files where it is virtually impossible for the

Antivirus program to detect. Note that Antivirus programs

do not read beyond the file.

 The proposed framework overcomes the problem of

forgetting and losing the secret key (password) by the

users.

 REFERENCES

[1] Abdulrazzaq. M. M., H. M. Y. Al-Bayatti and M. A. Fadhil. 2013. A

Proposed Technique for Information Hiding in a PE-File. Journal of

Advanced Computer Science and Technology Research, Vol.3 No.4,

153-162.

[2] Avedissian, L. Z. 2008. Image in Image Steganography System. Ph.D.

Thesis, Infomatics Institute for Postgraduate Studies (IIIPS),

University of Technology, Baghdad, Iraq.

[3] Clelland, C. T. R., V. P. and Bancroft. 2007. Hiding Messages in

DNA MicroDots. International symposium on Industrial Electronics

(ISIE), University of Indonesia, Indonesia, Vol. 1, PP. 315-327.

[4] Daren, P. and M. Scott. 2007. Steganography it History and its

application to Computer Based Data Files. School of Computer

Application (SCA), Dublin City University, Working Paper Studies

(WPS), Baghdad, Iraq.

[5] Dorothy, E. R, D. K. 2006. Cryptography and Data Security. IEEE

International Symposium on Canada Electronics (ISKE), University

of Canada, Canada, Vol. 6, pp. 119-122.

[6] Hamid, A. A. L. M. Kiah, H. T. Madhloom, B. B. Zaidan, A. A.

Zaidan. 2009. Novel Approach for High Secure and High Rate Data

Hidden in the Image Using Image Texture Analysis. International

Journal of Engineering and Technology, Vol. 1, pp. 69-75.

[7] Jalab, H. A., A. A. Zaidan, B. B. Zaidan. 2010. New Design for

Information Hiding within Steganography Using Distortion

Techniques. International Journal of Engineering and Technology,

Vol. 2, No.1, ISSN 1793-8236, pp. 72-77.

[8] Johnson, N. F., Z. Duric and S. Jajodia. 2006. Information Hiding:

Steganography and Watermarking-Attacks and Countermeasures.

Center for Secure Information Systems (CSIS),

Boston/Dordrecht/London, George Mason University.

[9] Katzenbeisser, S. and F. A. Petitcolas. 2001.Information Hiding

Techniques for Steganography and Digital Watermarking. Artech

House, USA.

[10] Naji, A. W., A. A. Zaidan and B. B. Zaidan. 2009. Challenges of

Hidden Data in the Unused Area Two within Executable Files.

Journal of Computer Sciences, ISSN 1549-3636, pp. 890-897.

[11] Namanya, A.P. Awan, J.P. Disso, M. Younas. 2019. Similarity hash

based scoring of portable executable files for efficient malware

detection in IoT. Future Generation Computer Systems.

[12] Neha and M. Kaur. 2016. Enhanced Security using Hybrid

Encryption Algorithm. International Journal of Innovative Research

in Computer and Communication Engineering (IJIRCCE), Vol. 4,

Issue 7.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Neil%20F.%20Johnson%3B%20Zoran%20Duric%3B%20Sushil%20Jajodia

https://doi.org/10.31871/IJNTR.7.6.31 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-7, Issue-6, June 2021 Pages 34-40

 40 www.ijntr.org

[14] Neil. F. Johnson. 1995. Steganography. Technical Report, George

Mason University.

http://www.jjtc.com/stegdoc/sec202.html

[15] Othman, F., A. A. Zaidan, B. B. Zaidan. 2009. New Technique of

Hidden Data In PE-File within Unused Area One. International

Journal of Computer and Electrical Engineering (IJCEE), Vol. 1,

No.5, ISSN 1793-8163, pp. 642-649.

[16] Rachmat. N and Samsuryadi. 2019. Performance Analysis of

256-bit AES Encryption Algorithm on Android Smartphone,

Journal of Physics: Conference Series, Conf. Series 1196 (2019)

012049.

[17] Rane. D. D. 2016. Superiority of Twofish over Blowfish.

International Journal of scientific research and management

(IJSRM), Volume 4, Issue11, Pages 4744 - 4746.

[18] Reyes A. R. L., D. Enrique, Festijo & R. P. Medina. 2018.

Blowfish-128: A Modified Blowfish Algorithm That Supports

128-bit Block Size. 8th International Workshop on Computer

Science and Engineering (WCSE), Bangkok, pp. 57 8-584.

[19] Saleh. M. E., A. A. Aly, and F. A. Omara. 2016. Data Security Using

Cryptography and Steganography Techniques. International Journal

of Advanced Computer Science and Applications (IJACSA), Vol. 7,

No. 6.

[20] Saleh. M. E., A. A. Aly and F. A. Omara. 2015. Enhancing Pixel

Value Difference (PVD) Image Steganography by Using Mobile

Phone Keypad (MPK) Coding. International Journal of Computer

Science and Security (IJCSS), Volume (9), Issue (2), pp. 397-397.

[21] Scheier, B., J. Kelsey and D. Wagner, C. Hall, N. Ferguson. 1998.

Twofish: A. 128-bit Block Cipher.

[22] Shetty. N. P. and N. Ranjan. 2018. Using Steganography &

Cryptography to Hide Data in EXE Files. International Journal of

Engineering & Technology, 7 (4.41) 9-14.

[23] Smith, J. and B. Comiskey.1996. Modulation and Information

Hiding in Images. Proceedings of First Information Hiding

Workshop, R. Anderson, Vol. 1174, pp. 207-226, Springer-Verlag,

Cambridge.

[24] Tian, Z., Yang, H. 2021. Code fusion information-hiding algorithm

based on PE file function migration. J Image Video Proc. 2021, 2.

 https://doi.org/10.1186/s13640-020-00541-3

[25] Usman. M., I. A. Shoukat, M. S. A. Malik, M. Abid, M. M. Hasan

and Z. Khalid. 2018. A Comprehensive Comparison of Symmetric

Cryptographic Algorithms by Using Multiple Types of Parameters.

International Journal of Computer Science and Network Security

(IJCSNS), VOL.18 No.12.

[26] Zaidan, A. A., F. Othman, B. B. Zaidan, R. Z. RAji, A. K. Hassan,

A. W Naji. 2009a. Securing Cover-File without Limitation of

Hidden Data Size Using Compution between Cryptography and

Stenography. Proceedings of the congress on Engineering, Vol. 1,

UKE 2009, London, U.K

[27] Zaidan, A. A., A. Majeed and B. B. Zaidan. 2009b. High Security

Cover-File of Hidden Data Using Statistical Technique and AES

Encryption Algorithm. World Academy of Science, Engineering and

Technology 54.

[28] Zaidan, B. B., A. A. Zaidan and F. Othman. 2008. Enhancement of

the Amount of Hidden Data and the Quantity of Image. Faculty of

Computer Quantity of Image. Quantity of Image. Faculty of

Computer Science and Information Technology, University of

Malaya, Kuala Lumpur, Malaysia.

Mr. Maysara Mazin AL-Saad,

received his B.Sc degree in

computer sciences from Baghdad

college of economic sciences

University, and M.Sc in computer

sciences from University

Kebangsaan Malaysia. He is

currently working as an IT

Coordinator in the department of

computing and information

technology, ministry of education

and higher education in the state

of Qatar.

http://www.jjtc.com/stegdoc/sec202.html
https://iopscience.iop.org/journal/1742-6596
https://doi.org/10.1186/s13640-020-00541-3

