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Abstract— A continuous univariate distribution called Logistic 

Lomax distribution is presented and studied. Relevant 

properties such as quantile function, survival function, and 

cumulative distribution function (CDF), probability density 

function (PDF), kurtosis and skewness measures are presented. 

For the parameter estimates of the presented distribution, 

Maximum likelihood Estimation (MLE) is used along with 

Cramer-Von-Mises estimation (CVME) and least-square 

estimation (LSE) methods. With the help of a real data set, we 

evaluate the goodness of fit of the distribution in comparison 

with other established distributions. 

 
Index Terms— Quantile function, Logistic Lomax 

distribution, Reliability function, MLE  

I. INTRODUCTION 

Lifetime distributions are generally used to study the length 

of the life of components of a system. Lifetime distributions 

are frequently used in fields like life science, biology, 

engineering, insurance, etc. Many continuous probability 

distributions such as Cauchy, exponential, gamma, Weibull 

have been frequently used in statistical literature for 

analyzing lifetime data. For a few years, most of the 

researchers are attracted towards one parameter Logistic 

distribution for its potential in modeling lifetime data with 

exceptional performance in various applications 

The logistic distribution is used for modeling logit 

models, logistic regression, growth models and neural 

networks. Though the logistic and normal distribution are 

very close in shape but we observe that in contrast to normal 

distribution, logistic distribution has slightly longer tails 

therefore providing more consistency with the underlying 

data. We can see the use of this model in finance, sports 

modeling and physical sciences.  

Let X denote non negative variable having shape parameter θ 

> 0 and following the logistic distribution then its CDF can be 

expressed as, 
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and its PDF is 
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Tahir et al. (2016) has introduced new family of 

continuous distributions obtained from a logistic random 

variable named as logistic-X family with varying properties. 
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Joshi et al. (2020) has introduced Logistic exponential power 

containing three parameters. For survival analysis, in 

comparison to modified Weibull distribution, a more 

flexibile distribution called Logistic-modified Weibull 

distribution was presented by Mandouh (2018). Joshi and 

Kumar (2020) have created half-logistic NHE distribution 

and studied its various mathematical and statistical 

properties. Chaudhary & Kumar (2020) have presented the 

half- logistic exponential extension distribution using the 

parent distribution as exponential extension distribution. . 

Chaudhary & Kumar (2020) also introduced Lindley half 

Cauchy distribution describing its relevant distributional 

properties. Kumar (2010) have presented the Bayesian 

analysis of exponential extension distribution.  

A method to describe logistic compounded model was given 

by Lan and Leemis (2008) where they also proposed the 

logistic–exponential survival distribution with the help of 

same method. For lifetime modeling, this distribution has 

some useful properties such as bathtub and upside bathtub 

classes which demonstrates closed-form density. The 

logistic–exponential distribution's survival function can be 

expressed as
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Using the same method as given by (Lan & Leemis, 2008), 

Logistic Lomax distribution has been presented. In this study 

we have taken heavy-tailed shaped distribution called Lomax 

distribution as parent distribution which was presented by 

Lomax (1954). Inserting one extra parameter to Lomax 

distribution, we aim to introduce a distribution with more 

flexibility for obtain a better fit while modeling the lifetime 

dataset. The Lomax or Pareto Type II distribution is used in 

areas like life science, medicine, engineering, and many 

more. It can also be used in reliability and life testing 

problems in engineering and in reliability analysis as an 

alternative distribution (Hassan & Al-Ghamdi, 2009). The 

CDF and PDF of Lomax distribution respectively can be 

written as 
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The article shows following structure. In Section 2 we present 

the Poisson Gompertz distribution with discussion of some 

relevant distributional properties. For the parameter estimates 

of the presented distribution, MLE estimates is used along 

with CVME and LSE methods in Section 3. With the help of 

a real data set we evaluate the goodness of fit of the 

distribution in comparison with other established distribution 

The Logistic Lomax Distribution with Properties and 

Applications  

Arun Kumar Chaudhary, Vijay Kumar 

https://www.sciencedirect.com/topics/mathematics/logistic-regression
https://www.sciencedirect.com/topics/mathematics/neural-network
https://www.sciencedirect.com/topics/mathematics/neural-network
https://www.sciencedirect.com/topics/mathematics/neural-network


The Logistic Lomax Distribution with Properties and Applications  

 

                                                                                      75                                                                                 www.ijntr.org 

 

in Section 4. We give the conclusion in Section 5. 

II. LOGISTIC LOMAX (LL) DISTRIBUTION 

In this section, we have introduced logistic Lomax (LL) 

distribution. In this study, we have taken the Lomax as 

baseline distribution.  Consider X denote non- negative 

random variable having a positive scale parameter β and 

positive shape parameters α and λ ,then logistic Lomax 

distribution's CDF is given as, 
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The PDF of LL distribution is  
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(2.2) 

In comparison of CDF of logistic lomax to log logistic CDF 

function, we see second term of the denominator being 

changed in its base to Lomax function thus we termed the 

distribution to logistic Lomax distribution. 

The reliability function of LL distribution 

is ( ) 1 ( )R x F x 
1
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The failure rate function of LL distribution can be defined as, 
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For different values of α, β and λ, in Figure 1, we have plotted 

PDF and hazard rate function of LL distribution  

 

 

Figure 1. Plots of PDF (upper panel) and hazard function 

(lower panel)  

The Quantile function of Logistic Lomax distribution is 
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(2.5) 

Random deviate generation: 
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Skewness and Kurtosis:   

The measures of Skewness based on quantiles is Bowley’s 

coefficient of skewness and it can be expressed as 
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Coefficient of kurtosis based on octiles which was defined by 

(Moors, 1988) is 
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III. METHODS OF ESTIMATION 

For the parameter estimates of the presented distribution, 

MLE estimates is used along with CVME and LSE methods 

in this section.  

 

3.1. Maximum Likelihood Estimates 

Consider, 1 2, ,..., nx x x  is random sample from 

 , ,LL     and the likelihood function,  , ,L     is 

given by, 

   1 2 1 2

1

; , ... , ,... / ( / )
n

n n i

i

L x x x f x x x f x  


   

 
 

 

1
1

2
1

(1 ) (1 ) 1
, ,

1 (1 ) 1

; 0.;  ( , , ) 0,  0

n i i

i

i

x x
L

x

x x


 




 
   



  






  
 

 
   

 

  

 

Now log-likelihood density is 
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 (3.1.1) 

Differentiation of (3.1.1) with respect to α, β and λ we get, 
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We get the ML estimates ˆ ˆˆ ,    and   , equating above 

equations to zero and solving for the unknown parameters i.e. 

α, β and λ, Maximizing (3.1.1) with software platforms like 

R, we can get the unknown parameters' estimated values. 

For the confidence interval estimation of α, β and λ and 

testing of the hypothesis, we have to calculate the observed 

information matrix. The observed information matrix of α, β 

and λ for the confidence interval estimation and testing the 

hypothesis is given as, 
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Let ( , , )     denote the parameter space and the 

corresponding MLE of   as ˆ ˆˆ ˆ( , , )    , then 
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 where  U   is the  

information matrix of Fisher. With help of Newton-Raphson 

method maximizing likelihood gives the observed 

information matrix and hence the variance-covariance matrix 

is obtained as, 
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(3.1.2) 

Thus approximate 100(1-α) % confidence intervals for α, β 

and λ from the asymptotic normality of MLEs can be 

constructed as, 
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Here upper percentile of standard normal variate is denoted 

by /2Z  

3.2. Least-Square Estimation (LSE) Method 

 

The least-square estimators (Swain et al, 1988) of the 

unknown parameters α, β and λ of LL distribution can be 

calculated with minimization of the following equation with 

respect to unknown parameters α, β and λ. 
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Differentiation of (3.2.2) with respect to α, β and λ we obtain, 
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Where ( ) (1 ) 1i iB x x     

Likewise we obtain weighted least square estimators with the 

minimization of 
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Thus we can get weighted least square estimators of α, β and λ 

with respect to α, β and λ. 
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3.3. Method of Cramer-Von-Mises estimation (CVME) 

 

The Cramer-Von-Mises estimators of α, β and λ are acquired 

with minimization of the following equation  
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Differentiation of (3.3.1) with respect to α, β and λ we get, 
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We obtain CVM estimators solving 
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IV. REAL DATASET APPLICATIONS 

Here, we demonstrate the real life application of logistic 

Lomax distribution using a real dataset. This is a real data set 

represents the remission times (in months) of a random 

sample of 128 bladder cancer patients (Lee & Wang, 2003): 

sorted data  

 

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 

1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 

2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 

3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 

4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 

5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 

6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 

7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 

9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 

12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 

14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 

20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 

36.66, 43.01, 46.12, 79.05 

 

The MLEs are calculated with the help of the optim() 

function in R platform (R Core Team, 2020) and (Mailund, 

2017) with minimization of the likelihood function (3.1.1). 

We have obtained Log-Likelihood value is l = -409.6158 and 

the MLE’s with their standard errors (SE) for α, β, and λ are 

presented in Table 1. 

Table 1 

MLE and SE for α, β and λ 

Parameter MLE SE 

alpha 1.38027     0.17020    

beta 0.04451     0.03440    

lambda 2.80412     1.84951    

.  

We have demonstrated the plots of the profile log-likelihood 

function in Figure 2 (Kumar & Ligges, 2011) where we can 

see the MLEs are unique. 
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Figure 2. Graph of profile log-likelihood function of α, β, and 

λ. 

In Figure 3 we illustrate the Q-Q plot and P-P plot of LL 

distribution. 

 
Figure 3. The Q-Q plot (upper panel) and P-P plot (lower 

panel) of LL distribution 

In Table 2 we illustrate estimated value of the parameters of 

LL distribution using MLE, LSE and CVE method and their 

corresponding negative log-likelihood, AIC and KS criterion.  

                                            Table 2 

Estimated parameters, log-likelihood, and AIC 
Method of 

Estimation 
MLE LSE CVE 

̂  1.38027 1.49883 1.51267 

̂  0.04451 0.07583 0.07443 

̂  2.80412 1.79072 1.81832 

-LL 409.6158 409.9209 409.9223 

AIC 825.2317 825.8418 825.8446 

KS(p-value)  0.0335(0.9988) 0.0301(0.9998) 0.0306(0.9998) 

 

In Figure 4, we have plotted the histogram and the density 

function of fitted distributions and Q-Q plot of estimation 

methods MLE, LSE and CVM.  

 

 
 

Figure 4. The Histogram and the density function of fitted 

distributions of estimation methods MLE, LSE and CVM 

(upper panel) and fitted quantiles and sample quantiles (lower 

panel) of LL distribution. 

Following distributions are used for comparison purpose of 

goodness of fit. 

A. Exponentiated Exponent4al Poisson (EEP): 

The PDF of EEP (Ristić & Nadarajah, 2014) can be expressed 

as 

 

 
 

   
1

1 exp 1
1

; 0, 0, 0

x x xf x e e e
e

x

 
  






 


  



 
    

 

  

 

B. Exponentiated Lomax (EL) distribution: 

The CDF of exponentiated lomax introduced by (Lan & 

Leemis, 2008) is 

  ( ) 1 (1 )

; 0, 0, 0, 0.

F x x

x




  

  

   

 

C. GENERALIZED EXPONENTIAL EXTENSION (GEE) 

DISTRIBUTION: 

The PDF of GEE introduced by (Lemonte, 2013) with 

parameters ,  and  is 

      

  

1

1

1 1 1

1 1 1 0

GEEf x; , , x exp x

exp x ; x .

 




     







   

    
  
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D. Generalized Exponential (GE) distribution: 

The PDF of generalized exponential distribution (Gupta & 

Kundu, 1999) is. 

   
 

1
1

; 0 0

x x
GEf x; , e e

, , x


    

 


  

 

. 

E. Exponential power (EP) distribution: 

The PDF of Exponential power (EP) distribution (Smith & 

Bain, 1975) is 

   1( ) exp 1

; ( , ) 0, 0

x x
EPf x x e e

x

 
   

 

  
  

 

 
. 

where α and λ are the shape and scale parameters, 

respectively. 

For the assessment of potentiality of the proposed model we 

have meaured the Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Corrected Akaike 

information criterion (CAIC) and Hannan-Quinn information 

criterion (HQIC) which are presented in Table 3.  

Table 3 

Log-likelihood (LL), AIC, BIC, CAIC and HQIC  
Distri

butio

n 

-LL AIC BIC CAIC HQIC 

LL 409.6158 825.2317 833.7877 825.4252 828.7080 

EEP 409.7528 825.5056 834.0617 825.6991 828.9819 

EL 410.0718 826.1436 834.6997 826.3372 829.6200 

GEE 410.6013 827.2026 835.7586 827.3961 830.6789 

GE 413.0776 830.1552 835.8592 830.2512 832.4728 

EP 426.6474 857.2948 862.9989 857.3893 859.6124 

 

Figure 4 illustrates the comparison made between the 

distributions. 

 
 

Figure 5. Empirical distribution function with estimated 

distribution function (upper panel) and The 

Histogram and the density function of fitted 

distributions (lower panel) 

 

Different p-values in the Cramer-Von Mises (A2), the 

Anderson-Darling (W) and Kolmogorov-Simnorov (KS) 

statistics are presented in Table 4 for comparing the 

goodness-of-fit of the LL distribution with other competing 

distributions. With minimum value of test statistic and higher 

p-value, we can observe that in comparison to the 

distributions taken, LL distribution gives better fit with more 

consistency and reliability in results. 

Table 4 

The goodness-of-fit statistics and their 

corresponding p-value  

Distribution KS(p-value) W(p-value) A2(p-value) 

LL  0.0335(0.9988)  0.0161(0.9994)  0.1115(0.9999)   

EEP  0.0380(0.9925)  0.0220(0.9946)  0.1486(0.9987)  

EL  0.0405(0.9846 )  0.0262(0.9871)  0.1798(0.9950)  

GEE  0.0442(0.9636)  0.0394(0.9367)  0.2630(0.9631)  

GE  0.0725(0.5115)  0.1279(0.4652)  0.7137(0.5472)  

EP  0.1199(0.0503)  0.5993(0.0223)  3.6745(0.0126)  
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V. CONCLUSION 

In the presented work, a continuous distribution with 

three-parameter called Logistic Lomax distribution is 

presented along with relevant distributional properties like 

PDF, CDF, hazard rate function, quantile function to build a 

better understanding of the distribution introduced. We have 

found that the model is flexible with inverted bathtub shaped 

hazard function. For the parameter estimates of the presented 

distribution, Maximum likelihood Estimation (MLE) is used 

along with Cramer-Von-Mises estimation (CVME) and 

least-square estimation (LSE) methods where MLE gave 

better outcome. On analysis of a real data set, we can observe 

that with minimum value of test statistic and higher p-value, 

in comparison to the distributions taken, LL distribution gives 

better fit with more consistency and reliability results. With 

such observation, we hope that in the field of survival 

analysis the proposed distribution can be an alternative to the 

existing distributions. 

. 
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