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Abstract- The Hubble constant tension between early and late 

Universe probes continues to exist. The standard Λ cold dark 

matter (ΛCDM) cosmological model did not solve this tension. 

Therefore, we must examine potential alternatives to the flat 

(ΛCDM) model that will consistently explain all of the 

observation data. The related alternative to the theoretical 

approach could be a new Relativistic Alpha Field Theory 

(RAFT) that extends GR to the extremely strong gravitational 

field.  The main prediction of RAF theory is a Closed Universe. 

Using this cosmological model, we calculated the Hubble 

parameters and compared it with the early (Planck’s) and late 

Universe probes. It is obtained that each probe generates its 

own cosmological parameters (mass, radius, velocity etc.). Thus, 

the observation methods used in early and late Universe probes 

are not equivalent each to the others. Therefore, the tension 

between early (Planck’s) and late Universe probes could not be 

solved.  
 

Index Terms- Relativistic alpha field theory (RAFT), strong 

gravitational field, tension between early (Planck’s) and late 

Universe probes, this tension could not be solved.  

 

I. INTRODUCTION 

   The recent observations of the Hubble constant H0 are 

discussed in 1. The results from the Planck observations 

2,3 showed the precise constraints on the cosmological 

parameters to data from CMB observations. Further, relaxing 

the flat ΛCDM model by different complexities 1,4-9 leads 

to the conclusion that the all presented models could not solve 

the tension with Planck’s observations. Especially, they 

elaborated the tension in 3.1σ with Planck’s observations. 

They concluded that this tension (if unresolved) may force the 

rejection of the flat ΛCDM model and indicate new physics 

that will explain our understanding of the cosmology. In the 

references 10,11 it is also discussed about the possibility 

that the Planck’s evidence for a closed Universe could leads 

to the possible crisis for cosmology. They concluded that a 

closed universe can provide a physical explanation of the 

observation effect with the Planck cosmic microwave 

background (CMB) spectra. This observation is preferring a 

positive curvature at more than the 99٪ confidence level. 

They founded that the posterior of the PL18 real temperature 

and polarization power spectra is centered on a closed model 

around ωk= - 0.04. The prospects for resolving the Hubble 

constant tension are also discussed in 12,13,14. The most 

known cosmological model has been developed 

independently by Alexander Friedmann 15, Georges 

Lemaitre 16, Howard Percy Robertson 17-19 and Arthur 

Geoffrey Walker 20. The Friedman model describes a 
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homogeneous, isotropic expanding or contracting Universe. 

The history and present state of the cosmological models with 

inclusion of dark matter and dark energy have been presented 

in 15-38.  

   Recently, a new approach to the solution of the field 

equations in a gravitational field is presented in the 

Relativistic Alpha Field Theory (RAFT) 39-41. This theory 

extends GR to the extremely strong gravitational field. The 

RAF theory is based on the non-vacuum solution of the field 

equations by including gravitational energy momentum 

tensor, GEMT, and excluding cosmological constant Λ. The 

GEMT is generated in the process of determination of the 

gravitational field parameters 39-42 instead of adding it by 

hand on the right side of the field equations, as Einstein 

suggested. Following the references 39-42, the process of 

derivation of the new cosmological model has been presented 

in detail in the reference 43 where it has been theoretically 

proved that the positive (repulsive) gravitational force could 

be the source of the dark energy. The repulsive force is 

produced in the region GM/2c2 ≤ r  GM/c2. At the radius                  

r = GM/2c2 repulsive gravitational force is maximal and at 

the radius r = GM/c2 is equal to zero. Further, in the region 

GM/c2  r  ∞ the gravitational force is attractive. At the 

radius r = GM/c2 gravitational force is changing from 

repulsive to the attractive one (in the expanding phase) and 

from attractive to repulsive force (in the contracting phase). 

Here G is gravitational constant, M is total gravitational mass 

in Universe, c is a speed of the light in vacuum and r is a 

gravitational radius. 

 

II. BRIEF COMPARISON OF FRIEDMAN AND RAFT 

COSMOLOGICAL MODEL 

   Following the assumption that the Universe geometric 

properties are homogeneous and isotropic, i.e. the 

Cosmological Principle is valid, Friedman has been derived 

his equations 15: 
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Here ( t )α is the scale factor with related time derivations α  

and α ,   is spatial curvature parameter, Λ is cosmological 

constant, while   and p  are fluid mass density and 

pressure, respectively. The presented equations (1) are the 

basis of the standard big bang cosmological model including 

the current ΛCDM model. New approach to derivation of the 

cosmological model is based on the new Relativistic Alpha 

Field Theory (RAFT) presented in 39-41,43. The RAF 

theory extends the application of the standard GRT to the 

extremally strong gravitational field. In this theory the 
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non-vacuum solution of the field equations, with inclusion of 

the gravitational energy momentum tensor (GEMT) and 
without cosmological constant Λ, is presented in (2,3). On 

that way we obtain the solution of the field parameters in the 

extremally strong gravitational field. In the case of vacuum, 

the mentioned field parameters are reduced to the well - 

known Schwarzschild vacuum solution of the field equations. 

Thus, RAF theory is an extension of GRT to the extremely 

strong gravitational field. Using the related Lagrangean, 

based on the solution of the line element in a gravitational 

field we obtain the first form of the cosmological model as 

function of the gravitational mass M and radius r that has 

been derived in the reference  39-41: 
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Here κ is the energy conservation constant and   is the related 

Lagrangean parameter. Now applying a mass density ρ and 

pressure p for an adiabatic process, as well as parameter  = 1 

(for time-like geodesics) and spatial curvature constant  = 

(1-κ2), the model (2) is transformed into the new 

cosmological model as function of the  mass density ρ and 

pressure p and gravitational radius r 43: 
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This model is valid for inclusion of the energy momentum 

tensor, T ≠ 0 and exclusion of the cosmological constant, Λ 

= 0. 

   Comparing the equations (3) with the Friedman equations 

(1), we can conclude that the gravitational radius r in (3) has 

the roll of the scale factor α  in (1). The first part on the right 

side of the second equation in (3) states that both the energy 

density and the pressure cause a deceleration in the expansion 

of the universe. This is the consequence of gravitation, 

including that pressure is playing a similar role to that of 

energy (or mass) density. This is, of course, in accordance 

with the principles of general relativity. On the other hand, 

the second part of the right side of the second equation in (3) 

causes acceleration in the expansion of the universe if 
2 24 3 > 1G r / c   and the deceleration if 

2 24 3 < 1G r / c  . 

In the case that
2 24 3 = 1G r / c   the acceleration of the 

universe motion is equal to zero. At this point the acceleration 

is changed into the deceleration (in the expansion phase) and 

the deceleration is changed into the acceleration (in the 

contraction phase). This is the consequence of the 

non-vacuum solution of the field equations with inclusion of 

the gravitational energy momentum tensor (GEMT), T , and 

exclusion of the cosmological constant Λ. Thus, we can see 

that the new cosmological model (3) generates both repulsive 

and attractive gravitational forces. In that sense the problem 

of the dark energy is solved, because the repulsive 

gravitational energy has the role of the dark energy. Of 

course, this should be confirmed by the related experiments.  

III. UNIVERSE VELOCITY AND ACCELERATION AT 

CHARACTERISTIC RADIUSES 

Folloi      Following the cosmological model (2,3), we can see that 
the sum of the kinetic energy Ek and potential energy Ep of a 

particle with unit mass is equal to constant:  
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Puttin   In the case that  = 1 (for time-like geodesics), one obtains the 

following relations between kinetic and potential energies 

and the energy conservation constant κ: 
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From the relations (2) and (5) and assuming that the Universe 

motion follows time-like geodesic ( = 1), one can derive 

radial velocity r and radial acceleration rof the Universe 

motion as function of the gravitational mass and radius:  
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The sign (+) in the velocity equation is valid for an expanding 

phase, while the sign (-) is related to the contracting one. The 

acceleration equation tells us that the Universe acceleration 

becomes repulsive if (GM/rc2)  1. One of the conclusions 

could be that the repulsive gravitational force is the source of 

dark energy. For the case (GM/rc2) =1 the acceleration is 

equal to zero and for (GM/rc2)  1 the acceleration is 

attractive. At the point (GM/rc2) =1, the repulsive 

acceleration is changing into the attractive one (for expansion 

phase) and vice versa (for contraction phase).  

   The velocity equation in (6) has two zeros at the positions r1 

and r2: 
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           (7)                  

From the relations (5) and (7) one can see that the 

hyperspherical (closed) scenario of the Universe motion can 

be realized only for the case where the energy conservation 

constant is satisfying the condition (0    1). This means 

that potential energy is greater than kinetic energy. For that 

case the velocity equation in (6) has two finite zeros: initial 

one for r = r1, and final one for r = r2, see (7). Recent 

observations of the Planck power spectra prefer that Universe 

could be closed 10,11.  



https://doi.org/10.31871/IJNTR.6.9.18                              International Journal of New Technology and Research (IJNTR) 

                                                                                  ISSN: 2454-4116, Volume-6, Issue-9, September 2020 Pages 38-44 

                                                                                      40                                                                                 www.ijntr.org 

   Further, the hyperbolic scenario of the universe motion can 

be realized only for the case where the energy conservation 

constant  is greater than one (   1). This means that 

kinetic energy is greater than potential energy. For that case 

the velocity relation (6) has only one real zero r1 in (7), 

because the other one gives a negative r2. The real zero r1 is 

the initial one for this scenario of the universe motion. 

   Finally, the flat universe can be realized only for the case 

where the energy conservation constant is equal to one (  

=1). This means that kinetic energy is equal to potential 

energy. For that case the velocity equation in (6) has one 

finite initial zero for r = r1, and one infinite final zero for r2 → 

∞. The initial radius r1 of the hyperbolic universe (  1) is 

less than the initial radius of the flat universe ( = 1) and 

also less than initial radius of the hyperspherical (closed) 

universe (  1). 

   The maximal radial velocity maxr can be obtained from (6) 

by applying condition that the radial universe acceleration is 

equal to zero: 
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Thus, for 1  the maximal radial velocity is greater than 

speed of the light in a vacuum. This belongs to the hyperbolic 

scenario of the Universe motion. For  = 1 the maximal 

radial velocity is equal to the speed of the light in a vacuum. 

This belongs to the flat scenario of the Universe motion.  

Finally, for   1 the maximal radial velocity is less than 

speed of the light in a vacuum. This belongs to the 

hyperspherical (closed) scenario of the Universe motion. 

Including the previous values of the energy conservation 

constant into (8) we obtain the following relation 

          max hyperbolic max flat max hyperspherical .r r r            (9) 

Further, including r1 and r2 from (7) into the accelerating 

equation of the universe motion (6), we obtain the related 

accelerations at the radiuses r1 and r2: 
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The first relation in (10) gives the repulsive initial 

acceleration 1r  at the radius r1 for all scenarios of the universe 

motion. On the other side the acceleration 2r at radius r2 of 

the universe motion is attractive for hyperspherical and 

hyperbolic scenarios of the universe motion. Meanwhile, for 

the flat scenario ( = 1) radius r2 is going to infinity and the 

acceleration is going to zero. From the previous consideration 

we can derive the relation between parameters κ and :     
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Here κ is the energy conservation constant derived from the 

Lagrangean 39 and   is spatial curvature parameter from 

the Friedmann equations (1). 

   For determination of the scenario of the Universe motion 

given by (11), we have to know the limitations of the energy 

conservation constant κ. In that sense, one can start with the 

radial density relation ρr at the minimal and maximal 

Universe radiuses: 

    

 

 

 

 

2

2

1
ρ ρ ,

1
(ρ

1(ρ (ρ (ρ
< 1

(ρ 1 (ρ + (ρ

r r max
min

r min
max

r max r max r min

r min r max r min

cM M
, ( )

r r G

cM
) ,

r G

) ) )
, .

) ) )

 
  

 
 

  
   

 

(12)             

   From the relations (12) we can see that the 

limitations of the energy conservation constant are 

in the region 0  κ < 1. This gives the limitation to 

the spatial curvature of the space > 0.  For that 

case the Universe is a hyperspherical (closed), 

because flat and hyperbolic universes are excluded 

by the limitations of parameter κ and parameter  

in (11) and (12). 
 

IV. DERIVATION OF HUBBLE PARAMETERS IN RAFT 

   Related to the observer, the radius r(t) in (3) has the role of 

the scale factor ( t )α  in (1). Thus, the model (3) can be 

transformed into the following relation:   
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Here a( t ) and the related time derivations α  and α have 

the same meaning as in the Friedman model (1). In order to 

compare the calculated result of Hubble constant H0 for 

closed Universe (13) with the related observed constant H0 

for flat Λ cold dark matter (ΛCDM) cosmological model we 

started with the observations given by the references 1,2,3: 
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                                                                                         (14) 

In (14) we have comparison of H0 observations for early 

Universe probes (2018) and late Universe probes (2019). The 

early Universe probes are related to Planck Collaboration at 

al. 2018b 3 and combination of clustering and weak lensing 
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data, BAO, and big bang nucleo-synthesis, Abbott at al. 

2018b 7. The late Universe probes are related to the results 

from SHOES (Riess at al. 2019 6) and HOLiCOW, 2019 

1. The latest line in (14) is the combination of two late 

Universe probes (2019, SHOES and HOLiCOW).  

     Models (3), (6) and (13) are the cosmological models 

based on the gravitational parameters only. Therefore, for 

calculation of the Universe parameters we applied the 

gravitational model (6), which here is transformed into the 

cosmological model of the Hubble parameters:  
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This model is more convenient for the application to the 

gravitational field. In this model H is Hubble parameter,   

is spatial curvature parameter from the Friedmann equations 

(1),  is  the energy conservation constant, rmpc is a radius 

equal to megaparsec and is time of the Universe expansion 

from the minimal radius r1 (7) to the present radius. Here τ is 

calculated from Hubble parameter H as an approximation, 

instead of using integration of the radial Universe velocity (6) 

for exact result. 

 

V. CALCULATION OF HUBBLE PARAMETERS FOR AVERAGE H0 

IN EARLY UNIVERSE PROBES 

   Here we started with the average value H0 from early 

Universe probes obtained by Planck Collaboration at al. 

2018b 3 and Abbott at al. 2018b 7 given in (14): 
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The Hubble’s law can be described by the following relation: 
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Related to the observer, mpcv is the universe expansion 

velocity at mpcr , while unv is the related universe expansion 

velocity at the universe radius unr . Following (6) we can see 

that the maximal radial velocity is at the radius where the 

radial acceleration is equal to zero, 0r  . Thus, this radius 

named as cr and related radial velocity cr can be calculated 

from (6,8) and (11): 
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From the second relation in (18) we can calculate maximal 

radial velocity for different constants  : 
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Following the relations (12) and (19) we can see that the 

Universe is closed ( > 0). This theoretical prediction of 

RAF theory is in an agreement with the recent observations of 

the Planck power spectra preferring that the Universe could 

be closed 3,11,15. 

     From this prediction and relations (19), we can conclude 

that the maximal radial expansion velocity in the closed 

Universe is less than speed of light in vacuum, c. At the 

moment we do not know the maximal radial velocity of the 

Universe expansion. Therefore, we started with assumption 

that the maximal radial velocity in the closed Universe is 

given by the relation:  

               0 98 0 95 0 9un max cv v r ( . c; . c; . c ).          (20) 

By the three values in (20) we suppose that the present 

Universe expansion velocity is close to the speed of the light 

in vacuum c. Combining the relations (16), (17) and (20) we 

can calculate the universe radiuses at rc=run:  
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The related universe mass can be calculated from the 

acceleration equation (6), assuming that the acceleration at 

the radiuses (21) is equal to zero:  
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The spatial curvature parameter   is calculated by using 

(19) and (20): 

 

2

2
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c un

r
, r v ( . ; . ; . ).

c
    


   (23) 

Knowing the spatial curvature parameter   (23) one can 

calculate the energy conservation constant κ and relations 

between kinetic and potential gravitational energies in (5): 
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      (24)          

Following the relations (16) to (22) and the spatial curvature 

parameter  (23), we calculated Hubble constant H0 for 

different maximal radial velocities (20) and related radiuses 

(21):  
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                                                                                         (25) 

In (25) τ is the time from the minimal radiuses (26) to the 

radiuses given by (21). The minimal and maximal Universe 

radiuses for the observed Hubble constant (16) are as follows:   
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 (26)                          

The parameters from (25) that the best correspond to the 

observed Hubble constant in (16) are as follows:  
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                                                                                        (27)                                         

The parameters from (25) valid for 0 9un cv r . c  are also 

closed to the observed parameters (16), obtained by Planck 

Collaboration at al. 2018b 3 and Abbott at al. 2018b 7. 

Further, to the present Universe state (27) belong also the 

related minimal radius, rmin, radius rc , and maximal radius, 

rmax:  
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Now we check the condition that radial density ρ=M/r in the 

region r < rc should be bigger than radial density at rc. Also, 

the radial density in the region rc to rmax should be bigger than 

radial density at rmax. From (12) we derived the following 

relations: 
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 
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                                                                                         (29) 

Thus, the radial density propositions are confirmed by the 

relations (29).  

 

VI. CACULATION OF HUBBLE PARAMETERS FOR AVERAGE H0 

IN LATE UNIVERSE PROBES 

 

   In order to compare the previous analyses for the early 

Universe probes, calculated by the Hubble constant H0 = 67.4 

kms-1 Mpc-1, here we use the average value of H0 from the late 

Universe probes obtained by the late results from SHOES 

(Riess at al. 2019 6) and HOLiCOW, 2019 1: 

                              
1 1

0 73 65H . kms Mpc .                 (30) 

Combining the relations (30), (17) and (20) we can calculate 

the universe radiuses at rc = run : 
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(31) 

The related universe mass can be calculated from the 

acceleration equation (6), assuming that the acceleration at 

the radiuses (31) is equal to zero: 
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                                                                                         (32) 

The spatial curvature parameters  and the energy 

conservation constants κ are the same as the values in (23) 

and (24), respectively. Following the relations (30) to (32) 

and the spatial curvature parameter  (23), we calculated 

Hubble constant H0 for different maximal radial velocities 

and related radiuses (31):  
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                                                                                         (33) 

In (33) τ is the time from the minimal radiuses (34) to the 

Universe radiuses given by (31). The minimal and maximal 

Universe radiuses for the calculated Hubble constants (33) 

are as follows:   
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                                                                                         (34) 

The parameters from (33) that the best correspond to the 

observed Hubble constant in (30) are as follows:  
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                                                                                         (35) 

Further, to the Universe state (35) belong also the related 

minimal radius, rmin, radius rc and maximal radius, rmax:  
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                   (36)  

The parameters from (33) valid for 0 95un cv r . c   and 

0 9un cv r . c   are also close to the observed Hubble 

parameter (30). 

 

VII. COMPARISON OF PREVIOUS RESULTS 

   Here we presented the comparison between the calculated 

Hubble and cosmological parameters based on the two 

observed Hubble constant H0 in the early and late Universe 

probes. For calculation of the mentioned parameters we used 

cosmological gravitational model (15), valid for the closed 

Universe. Thus, in the first line of the equations (37) we have 

the calculated result of the Hubble parameter H valid for the 

early Universe probes (14), H0=67.4 kms-1Mpc-1. In the 

second line we have the calculated Hubble parameter H valid 

for the observed H0=73.65 kms-1Mpc-1, as the average value 

obtained from the late Universe probes (14):  
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                                                                                         (37) 

The calculated parameters H belong to the calculated Hubble 

constants H0cal which are the closest to the observed H0. 

   The next relations show the calculated Hubble constants 

H0cal by using Hubble parameters H form (37) and relation 

H0cal=Hrmpc:  
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                                                                                         (38)     

From (38) we can see that the smaller difference between 

observed and calculated Hubble constants H0 belongs to the 

early Universe probes, H0=67.4 kms-1 Mpc-1, see (14). 

   Now we have comparison between calculated minimal 

gravitational radiuses that belong to the related observed 

Hubble constants H0: 
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                                                                                         (39) 

From (39) we can see that to the smaller observed Hubble 

constant H0=67.4 kms-1 Mpc-1 belongs the largest minimal 

gravitational radius.  

   It follows the comparison of the calculated Universe 

radiuses that belong to the observed Hubble constants: 
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(40)                    

From (40) we also can see that to the smaller observed 

Hubble constant H0=67.4 kms-1 Mpc-1 belongs the larger 

calculated Universe radius.  

   The calculated Universe mass that correspond to the 

observed Hubble constants are presented in the following 

relations:    
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From the relations (41) we can see that to the smaller 

observed Hubble constant H0=67.4 kms-1 Mpc-1 belongs the 

greater Universe mass.  

    Finally, we have comparison between the calculated  

Universe expansion time   from the minimal radius (39) to 

the present Universe radius (40) by using the related 

calculated Hubble parameter H and the relation
1H  , see 

(15):                   
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
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 (42) 

As we can see from (42), the longer Universe expansion time 

belongs to the smaller Hubble constant H0=67.4 kms-1 Mpc-1 

(Planck (2018b, see (14)). Here τ is calculated from Hubble 

parameter H as an approximation, instead of using integration 

of the radial Universe velocity (6) for the exact result. 

 

VIII. DISCUSSION 

   The standard Λ cold dark matter (ΛCDM) cosmological 

model did not solve the Hubble constant tension between 

early and late Universe probes. This means that we have to 

find out the new model that will consistently explain all of the 

observation data. Here we used new cosmological model 

based on the Relativistic Alpha Field Theory (RAFT). This 

model predicts the Closed Universe. Following this 

cosmological model, we calculated Hubble constants and 

compared them with the early and late Universe probes. Thus, 

each probe generates its own cosmological parameters (mass, 

radius, velocity etc.). This means that the observation 

methods in the early and late Universe probes are not 

equivalent each to the others. Therefore, the tension between 

the early (Planck’s) and late Universe probes could not be 

solved.  
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