
 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-6, Issue-9, September 2020 Pages 01-03

 1 www.ijntr.org

Abstract — Multi-Armed Bandit (MAB) is a class of

reinforcement learning algorithms. A multi-armed bandit

implementation has a agent (learner) that chooses

between k different uncertain actions and receives a reward

based on the chosen action. This paper focuses mainly on the

Epsilon Greedy Algorithm in comparison to Thompson

Sampling and UCB-1 (Upper Confidence Bound). It talks about

the benefits of using bandit algorithms over A/B testing and

evaluates the effectiveness of the 3 main solutions. It

experimentally shows the best use cases for the Epsilon Greedy

Algorithm - when the experimentation period is longer than

that of A/B testing and you want to exploit the best performing

variant. It also talks about when the algorithm does not provide

statistically correct results - when the sample size, on each path

of the experiment, is very small.

Index Terms— exploration, exploitation, regret, reward

function, local maxima.

I. INTRODUCTION

 The Multi-armed bandit solution is a more intelligent way of

doing A/B tests. It is based on a class of Machine Learning

(ML) based reinforcement learning algorithms

which dynamically allocate more traffic to variations of an

experiment that are performing well, while allocating less

traffic to the ones that are underperforming. It balances

between exploration and exploitation simultaneously during

the learning process, helping maximise the expected gain and

reduces the amount of regret. The name comes from a

gambler at a row of slot machines, who has to decide which

machines to play and how much to play each of them, and

whether to continue with the current machine or try a

different machine. The multi-armed bandit problem also falls

into a broader category of stochastic scheduling. The three

most popular MAB algorithms are Epsilon Greedy,

Thompson Sampling, and Upper Confidence Bound 1

(UCB-1). This paper will focus on the Epsilon Greedy

Algorithm and the results it produces when the variations of

an experiment have different payout rates.

II. A REGULAR A/B TEST

To understand the benefits of multi-armed bandit

algorithm, we first have to understand A/B testing.

The purpose of A/B testing is to determine the variant of an

experiment that is truly more effective than another. In order

to make accurate measurements, A/B tests must account for 2

key values: statistical power and statistical significance.

Statistical power is the probability that the experiment will

detect an effect where an effect is present while statistical

significance is the measure of the degree of accuracy of the

Riti Agarwal, Computer Science Student, Inventure Academy,

Bangalore, India

results. While conducting an A/B experiment, users are

divided into 2 groups: the treatment group and the control

group. The treatment group is given access to the one variant

while the control group has access to another variant. The

conversion rate of both these groups is measured for

statistical significance. A balanced A/B test typically

allocates equal traffic to each group, until reaching a

significant sample size (pre-determined by the user). This

leads to a high regret (decrease in potential rewards due to

executing the learning algorithm instead of performing

optimally from the start) as we cannot change traffic

allocation during the course of the experiment, according to

the results being yielded up until then. Therefore, we say that

A/B testing is only an exploration algorithm.

III. BENEFITS OF MAB OVER A/B TESTING

Multi-Armed Bandit provides some key benefits over regular

A/B testing: it helps conclude the experiment faster and it

reduces the overall regret. The two aspects of MAB are

exploration and exploitation. Exploration is an attempt to find

the more successful variant while exploitation is maximising

the reward function. These 2 facets of the experiment run

simultaneously to make the MAB algorithms effective. The

algorithm maximises the reward function by allocating a

majority of the incoming traffic to the variant with a higher

conversion rate, while allocating a smaller part of the traffic

to the variants that need to be explored further. This way, the

user maximises his/her reward function while the testing

process is happening and the testing process concludes

sooner, allowing the user to make better updates. In

summary, the difference between MAB and A/B testing is

that A/B testing only allows you to explore while the

experiment is running and exploit after the experiment has

concluded. MAB allows you to explore and exploit

simultaneously, so you don't have to wait for the experiment

to conclude before you can start exploiting.

Epsilon Greedy

Pros:

1. Exploits more- it is the most greedy algorithm

available

2. Can give results with fewer samples than necessary

for Thompson sampling

3. Easy to implement

Cons:

1. If the difference between the reward function of the

two variants is very small, the algorithm will route

most traffic to the initially winning variant, although

this may not actually be the winning variant. Thus,

the algorithm would need a lot more data to provide

a set of statistically significant results. (the

The Epsilon Greedy Algorithm - a Performance

Review

Riti Agarwal

The Epsilon Greedy Algorithm - a Performance Review

 2 www.ijntr.org

algorithm might converge to a local maxima rather

than a global maxima)

Thompson Sampling

Pros:

1. It is a more principled algorithm, which yields more

accurate results even in cases where the difference

in the payout rates of the two paths is very less.

(always converges to a global maxima)

Cons:

1. It requires a lot of samples to converge to give

significant results

2. It doesn't exploit as much as the epsilon greedy

algorithm, so lesser cumulative rewards for the user

3. Harder to implement

UCB-1

Pros:

1. Performs consistently over time

2. Successful variant will continue to perform the best

while least successful one will remain least popular

3. Once there is enough accumulated data, the

algorithm exploits almost all the time

4. Reacts to best performing variation quickly

Cons:

1. Depending on how the algorithm is running, the

distribution percentage of a variation may reach 0.

2. Overall performance may lose to Thompson

Sampling

3. Hard to implement

IV. EPSILON VALUE

The epsilon value is set at the beginning of the experiment. It

needs to be tuned to fit the needs of the experiment. There is

no one value that works best for all experiments. The

exploration probability is 𝜖, while the exploitation probability

is 1-𝜖. A higher 𝜖 value means higher regret, as there is lesser

exploitation. A lower 𝜖 value means lesser regret, but the

algorithm will find the best performing variant faster and it is

more likely to be accurate.

V. EXAMPLE OF EPSILON GREEDY IMPLEMENTATION

Let's say you are an app developer and you want to see

whether a red, yellow, green or blue button attracts more

users. You don’t want to waste resources and missing out on

sales, nor do you want to miss out on the possibility of a great

revenue booster. So you decided to use a MAB algorithm,

and chose epsilon greedy. Let's assume you set the 𝜖 value to

0.1. This means the algorithm will route 10% of the traffic

equally between the red, yellow, green and blue buttons. It

will route 90% of the traffic to the button that attracts the

most users. There was 10% exploration, and 90%

exploitation.

VI. EXPERIMENT

I wanted to find out how long each epsilon value took to

converge and whether it converged to the correct variation or

not, when given variations with different kinds of payout

rates. To do this, I used the Epsilon Greedy Algorithm with

epsilon values of 0.1, 0.2 and 0.3 and measured the trial at

which it converged for variations with payout rates of

[0.01-0.02-0.03-0.04], [0.1-0.2-0.3-0.4], [0.1-0.3-0.5-0.7]. I

also measured whether the algorithm converged to the correct

variation. We ran the algorithm for 20,000 trials.

These were my results:

Epsilon Value 0.1

Variation

payout rate

0.01-0.02-

0.03-0.04 0.1-0.2-0.3-0.4 0.1-0.3-0.5-0.7

Trial number

at which it

converged 229-434 16129 2478

Did it

converge to

correct arm

NO (

converged to

0.03 arm) YES YES

As evident, with a low epsilon value and a small difference

between payout rates, the algorithm converges to a variation

that doesn’t necessarily have the highest payout rate. This is

because the third variation started doing well in the

beginning, and since the algorithm is so “greedy”, it started

routing most of the traffic to this variation, without exploring

the others as much. In these cases, when there is not much

difference between the payout rates, it is better to use A/B

testing, as this yields more statistically accurate results.

When the difference between the payout rates is a little more

[0.1-0.2-0.3-0.4], it converges to the variation with the

highest payout rate but takes a slightly longer time to do

so. With a much higher difference in payout rates, the

algorithm converges to the variation with the highest payout

rate in a shorter period of time. In these use cases, the epsilon

greedy algorithm is a better choice as it significantly reduces

regret.

Epsilon Value 0.2

Arm Payout rate

0.01-0.02-

0.03-0.04 0.1-0.2-0.3-0.4 0.1-0.3-0.5-0.7

Trial number at

which it

converged - 2524 2119

Did it converge

to correct arm NO YES YES

With an epsilon value of 0.2, there is 80% exploitation and

20% exploration, so with a higher exploration percentage the

algorithm did not converge to a variation with a lower payout

rate. In the first scenario, with little difference in the payout

rates, the algorithm was unable to converge; it kept routing

different amounts of traffic to the variations. In the second

case, when the payout rates were not as close together, the

algorithm converged much faster than it did with an epsilon

value of 0.1. This is due to the higher exploration. When the

 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-6, Issue-9, September 2020 Pages 01-03

 3 www.ijntr.org

payout rates are very far apart, the algorithm converges early

enough, just like before but the trail number at which it

converged doesn’t change as much.

Epsilon Value 0.3

Arm Payout rate

0.01-0.02-

0.03-0.04 0.1-0.2-0.3-0.4 0.1-0.3-0.5-0.7

Trial number at

which it

converged 396 626 3599

Did it converge

to correct arm YES YES YES

In this scenario, with an epsilon value of 0.3, there is 70%

exploitation and 30% exploration. With this much

exploration, the algorithm converged in a short period of time

even when the difference in payout rates was minimal. One

thing we notice about this is that when the difference between

the payout rates increase, the trial number at which the

algorithm converges also increases. This is because with such

high exploration, the algorithm hits “local maximas” - a short

period of time where the algorithm converges to a variation

with a lower payout rate. In the second scenario, when the

payout rates were [0.1-0.2-0.3-0.4], the algorithm had a local

maxima from trail numbers 36 to 87, before it moved on to

finding the correct maxima. A similar thing happened with

the third scenario, with payout rates of [0.1-0.3-0.5-0.7]. It hit

local maxima between trail number 39 and 443.

VII. CONCLUSION

1. The Epsilon Greedy Algorithm is a very useful

algorithm when you want to exploit a lot and the

difference in payout rates is a lot. It works well with

relatively smaller samples as well, as compared to

Thompson sampling.

2. When the difference between payout rates is very

small and the sample size is not big enough, the

algorithm may converge to local maxima.

3. It is important to select the correct epsilon value, a

very high epsilon value can lead to more regret, as

there is less exploitation and higher chance of a local

maxima occurring.

REFERENCES

[1] https://github.com/KaleabTessera/Multi-Armed-Bandit

[2] https://towardsdatascience.com/comparing-multi-armed-bandit-algorit

hms-on-marketing-use-cases-8de62a851831

[3] https://www.optimizely.com/optimization-glossary/multi-armed-band

it/

[4] https://towardsdatascience.com/beyond-a-b-testing-multi-armed-bandi

t-experiments-1493f709f804

[5] https://frosmo.com/multi-armed-bandit-optimization-makes-testing-fa

ster-and-smarter-with-machine-learning/

[6] https://vwo.com/blog/multi-armed-bandit-algorithm/

[7] https://docs.frosmo.com/display/ui/Multi-armed+bandit+optimization

#Multiarmedbanditoptimization-Multi-armedbanditalgorithms

[8] https://imaddabbura.github.io/post/epsilon-greedy-algorithm/#:~:text=

epsilon%2DGreedy%20Algorithm%20works%20by,N%20of%20sele

cting%20any%20option.

Riti Agarwal https://www.linkedin.com/in/riti-agarwal-0310051a9/

https://github.com/KaleabTessera/Multi-Armed-Bandit
https://towardsdatascience.com/comparing-multi-armed-bandit-algorithms-on-marketing-use-cases-8de62a851831
https://towardsdatascience.com/comparing-multi-armed-bandit-algorithms-on-marketing-use-cases-8de62a851831
https://www.optimizely.com/optimization-glossary/multi-armed-bandit/
https://www.optimizely.com/optimization-glossary/multi-armed-bandit/
https://towardsdatascience.com/beyond-a-b-testing-multi-armed-bandit-experiments-1493f709f804
https://towardsdatascience.com/beyond-a-b-testing-multi-armed-bandit-experiments-1493f709f804
https://frosmo.com/multi-armed-bandit-optimization-makes-testing-faster-and-smarter-with-machine-learning/
https://frosmo.com/multi-armed-bandit-optimization-makes-testing-faster-and-smarter-with-machine-learning/
https://vwo.com/blog/multi-armed-bandit-algorithm/
https://docs.frosmo.com/display/ui/Multi-armed+bandit+optimization#Multiarmedbanditoptimization-Multi-armedbanditalgorithms
https://docs.frosmo.com/display/ui/Multi-armed+bandit+optimization#Multiarmedbanditoptimization-Multi-armedbanditalgorithms
https://imaddabbura.github.io/post/epsilon-greedy-algorithm/#:~:text=epsilon%2DGreedy%20Algorithm%20works%20by,N%20of%20selecting%20any%20option.
https://imaddabbura.github.io/post/epsilon-greedy-algorithm/#:~:text=epsilon%2DGreedy%20Algorithm%20works%20by,N%20of%20selecting%20any%20option.
https://imaddabbura.github.io/post/epsilon-greedy-algorithm/#:~:text=epsilon%2DGreedy%20Algorithm%20works%20by,N%20of%20selecting%20any%20option.

