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   Abstract – The Planck’s length Lp, is believed to be the 

shortest meaningful length as the limiting distance below which 

the regular notions of space and length surcease to exist. Any 

attempt to investigate the possible existence of smaller distances, 

by using higher energy collisions, would result in black hole 

production. This is the consequence of the vacuum solution of 

the Einstein’s field equations that predicts the singularities and 

the related black holes in the extremely strong field. Recently, it 

has been developed a new Relativistic Alpha Field Theory 

(RAFT) that extends the application of General Relativity 

Theory (GRT) to the extremely strong fields at the Planck’s 

scale. One of the predictions of RAF theory is: there exists a 

minimal gravitational radius at r = (GM/2c2) that prevents 

singularity at r = 0, i.e. the nature protects itself. If RAF theory 

is correct then one can find out the following consequences of 

the existence of the minimal radius in a gravitational field: a) 

each mass has its own minimal radius, b) the minimal radius of 

the Planck’s mass is equal to half of the Planck’s length, c) the 

smallest minimal radius in a gravitational field belongs to the 

particle with the smallest mass and d) the Planck’s mass is not 

the smallest mass in the spacetime and therefore the Planck’s 

length is not the shortest meaningful length. Thus, it has been 

theoretically confirmed that the physical significance of the 

Planck’s length is the minimal length (diameter) of the Planck’s 

mass. 

 Index Terms- Meaningful minimal length, Planck’s length, 

Relativistic Alpha Field Theory (RAFT), Extremely strong 

gravitational fields 

I. INTRODUCTION 

   The Planck’s length, Lp, 1-6  and Planck’s mass, Mp, 7-9  

are the base units in the system of natural units known as 

Planck’s units that have been developed by physicist Max 

Planck. It is believed that the Planck’s length is the shortest 

meaningful length as the limiting distance below which the 

regular notions of space and length surcease to exist. There is 

currently no proven physical significance of the Planck’s 

length. Meanwhile, it is theoretically considered to be the 

quantization of space in the quantum gravity theory 4. In 

some forms of quantum gravity, the Planck’s length is the 

length scale at which the structure of spacetime becomes 

dominated by quantum effects, and it is impossible to 

determine the difference between two locations less than one 

Planck’ length apart. Any attempt to investigate the possible 

existence of smaller distances, by using higher energy 

collisions, would result in black hole production 3. This is 

the consequence of the vacuum solution of the Einstein’s 

field equations that predicts the singularities in the extremely 

strong field and the existence of the related black holes. 

Therefore, General Relativity Theory (GRT) 10-15 with 
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vacuum solution of the Einstein’s field equations cannot be 

applied to the extremely strong field at Planck’s scale.  

   Recently, it has been developed a new Relativistic Alpha 

Field Theory (RAFT) 16-21,25 that extends the application 

of GRT to the extremely strong fields including of the 

Planck’s scale 22-24. This is the consequence of the 

following predictions of RAF theory 16-19: a) no a 

singularity at the Schwarzschild radius, b) there exists a 

minimal radius at rm = (GM/2c2) that prevents singularity at r 

= 0, i.e. the nature protects itself, and c) the gravitational 

force becomes positive (repulsive) if (GM/rc2) > 1, that could 

be a source of a dark energy.  

   Here we started with the investigation of the minimal 

gravitational radius rpm of the Planck’s mass Mp. In order to 

apply RAF theory, we assumed that the Planck’s mass Mp is 

the spherically symmetric non-rotating body. Further we used 

the relation for the minimal radius in a gravitational field 

16-18 and obtained that the Planck’s length Lp is the 

diameter of the Planck’s mass. Consequently, the minimal 

gravitational radius rpm of the Planck’s mass is equal to half of 

the Planck’s length: rpm= (GMp /2c2) = Lp / 2. On that way, it 

has been theoretically confirmed that the physical 

significance of the Planck’s length is the minimal length 

(diameter) of the Planck’s mass. 

   Further we wanted to know does the Planck’s length is the 

smallest length in a spacetime? The next investigation result 

tells us that the smallest minimal radius rm (the smallest 

diameter length) in a gravitational field belongs to the particle 

with the smallest mass Mm. Since the Planck’s mass Mp, is not 

the smallest mass in the spacetime, one can conclude that the 

Planck’s length Lp is not the shortest meaningful length as the 

limiting distance below which any regular smaller distance in 

a gravitational field cannot exist. Since each i-th mass Mi has 

its own minimal i-th gravitational radius rmi, the radial mass 

density r =M/r of each i-th mass at i-th minimal gravitational 

radius is constant and equal to r =2c2/G. This radial density 

is the same for all (Mi, rmi) pairs of masses and minimal 

gravitational radiuses. At the same time, this radial density is 

the maximal one in the gravitational field, rmax=2c2/G. 

   It is of the grate interest to investigate the radial 

acceleration at the minimal gravitational radius, mr . The 

results of that investigation showed that the radial 

acceleration at the minimal gravitational radius is given by 

the relation mr = C/M, where M is mass and C is constant. 

This constant can be described by three relations: 4c4/G, or 

2
rmaxG, or 4c4Mp/Lp. In the case that mass is equal to the 

Planck’s mass, M=Mp, the radial acceleration at the minimal 

Planck’s radius rpm=Lp/2 is given by the relation mr = 4c4/Lp. 

From the relation of the radial acceleration at the minimal 

gravitational radius we can see that the maximal acceleration 

belongs to the smallest mass. It is very important to point out 
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that the radial acceleration at the minimal gravitational radius 

is positive (repulsive) one and could be the source of the dark 

energy. More details about that have been presented in 18, 

19.  

   Furthermore, the existence of the minimal gravitational 

radius, predicted by RAF theory, has been employed for 

derivation of the new quantum gravity model 25. The 

existence of a non-singular rotating black hole, presented in 

26, could also be the consequence of the existence of the 

minimal gravitational radius. In 27-32 different problems 

have been considered by applying Planck’s parameters 

(c,ћ,G,Lp,Mp). The mentioned problems can also be solved by 

using maximal radial density in the gravitational field, 

rmax=2c2/G, that has been defined in this article. 

II. DERVATION OF MINIMAL RADIUS OF PLANCK’S MASS   

   An alpha field is a potential field that can be described by 

two field parameters α and α′. To this category belong, among 

the others, electrical and gravitational fields. Field parameters 

α and α′ are described as the scalar dimensionless (unitless) 

functions of the potential energy U of a particle in an alpha 

field 16. In order to determine minimal gravitational radius 

of the Planck’s mass, one can start with the general line 

element ds2 derived in Relativistic Alpha Field Theory 

(RAFT) 16  
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                                                                                     (1) 

Here  is a constant. Following the well-known procedure 

10-15, this line element can be transformed into the 

spherical polar coordinates in the nondiagonal form  
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                                                                                      (2)  

The line element (2) belongs to the well-known form of the 

Riemanns type line element 10-15 
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Comparing the equations (2) and (3) we obtain the 

coordinates and components of the covariant metric tensor, 

valid for the line element (2): 
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   (4)  

Starting with the line element (2) we employ, for the 

convenient, the following substitutions: 

                    2, / .                    (5) 

In that case the nondiagonal line element (2) is transformed 

into the new relation 

2 2 2 2 2 2 2 2 2ds c dt 2 cdtdr dr r d r sin d .          

                                                                         (6) 

Using the coordinate system (4), the related covariant metric 

tensor gμη of the line element (6) is presented by the matrix 

form 16: 

          
2

2 2

0 0

1 0 0

0 0 0

0 0 0

g .
r

r sin

 
 
      
 
  



 





    (7) 

This tensor is symmetric and has six non-zero elements as we 

expected that should be.   

   For calculation of the field parameters  and α′ we have to 

use two equations. The first one is the Einstein’s field 

equations 10-15 without a cosmological constant ( = 0) 
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(8) 

Here R is the Ricci tensor, g is the metric tensor, R is 

the Ricci scalar and Tη is the gravitational  

energy-momentum tensor. The second equation is the 

covariant energy equation Ec, valid for an alpha field 20: 
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Here m0 is a particle rest mass, V is a relative velocity in 

vacuum, 1   and H is the transformation factor in an 

alpha field which, for the case without any potential field (α = 

α′ = 1), is reduced to the Lorentz – Einstein transformation 

factor , valid in the Special Relativity. From the equation (9) 

we can see that the covariant energy equation Ec is in the 

linear form. The related nonlinear equation of Ec can be 

obtained by applying of the square operation to the relation 

(9) (see 20): 
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This is the nonlinear energy - momentum equation of a 

particle moving in an alpha field with a relativistic 

momentum P. This new nonlinear relation is form invariant 

and consistent to the related equation in the Special 

Relativity.  

   Applying relations (5-9) we obtain the solutions of the field 

parameters  and   in a gravitational static field 16: 
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  (11) 

The related solution of the components of the 

energy-momentum tensor in the gravitational spherically 

symmetric static field is given by relation 17  
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Thus, applying the relations (6 - 11), we obtain solution of the 

line element for the gravitational spherically symmetric static 

field 
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                                                                       (13) 

   Remarks 1. The field parameters (11) satisfy the Einstein’s 

field equations (8) with a cosmological constant  = 0 and 

the covariant energy equation Ec (9). In the case of a strong 

static gravitational field 22-24, the quadratic term 

 
2

2GM / r c  generates the related energy-momentum 

tensor Tη (12). For that case, we do not need to add by hand 

the related energy-momentum tensor Tη on the right side of 

the Einstein’s field equations (8). In the case of a relatively 

weak static gravitational field, like in our solar system, the 

quadratic term  
2

2GM / r c  is too small and can be 

neglected. For that case, the field parameters (11) satisfy the 

Einstein’s field equations in a vacuum (Tη = 0,  = 0), and 

line element (13) is converted into the related vacuum 

solution   
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Following the solution of the line element (13) one can 

conclude that RAF theory extends GR to the extremely strong 

gravitational field including Planck’s scale. 

   Proposition 1. Considering the solution of the line element 

in the extremely strong gravitational field (13) we can 

conclude that the minimal radius of the Planck’s mass Mp, 

denoted by rpm, is equal to half of the Planck’s length Lp: 
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   Proof of the Proposition 1. In order to prove of the 

proposition 1 we can start with the line element (13). This line 

element can be rewritten into the following form 
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                                                                                (16) 

It is easy to prove that the line element (16) is regular if the 

following condition is satisfied: 

     
2 2 2

1 0 1
2 2 2

GM GM GM
r

r c r c c

 
        

   

(17) 

Thus, the region of the regularity of the line element (16) is 

determined by the last relation in (17). From the previous 

relation we can conclude that there exists the minimal 

gravitational radius mr which still preserves regularity of the 

line element (16) 

                                  
22

m

GM
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c
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Thus, including of the minimal gravitational radius mr (18) 

into the line element (16) we obtain regular line element in 

the form 
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For the radiuses less than minimal gravitational radius mr  
the 

line element (16) becomes imaginary item. Compare the 

minimal gravitational radius mr  with the Schwarzschild 

radius sr one can see that the minimal gravitational radius is 

four time less than Schwarzschild radius 
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Now, applying of the Planck’s mass Mp to the relation (18) we 

obtain minimal gravitational radius of the Planck’s mass 
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                      (21) 

As it is well-known, the Planck’s mass Mp 7-9 and the 

Planck’s length Lp 1-6 are defined from three fundamental 

physical constants: the speed of light in vacuum c, the 

reduced Planck’s constant ћ  and the gravitational constant 

G: 

                       
p p
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         (22) 

Assuming that the Planck’s mass Mp has spherically 

symmetric form (i.e. Lp is diameter of the Planck’s mass) and 

following the relations (21) and (22), we can calculate the 

following equality: 
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By the last relation in (23), the proof of the proposition 1 (that 

the minimal gravitational radius of the Planck’s mass Mp , 

denoted by rpm, is equal to half of the Planck’s length Lp) is 

finished. 

III. IS THE PLANCK’S LENGTH THE SHORTEST MEANINGFUL 

LENGTH IN SPACETIME?  

   The Planck’s length, Lp, 1-6 is believed to be the shortest 

meaningful length as the limiting distance below which any 

regular smaller distance in the spacetime cannot exist. There 

is currently no proven physical significance of the Planck’s 

length. Any attempt to investigate the possible existence of 

smaller distances, by using higher energy collisions, would 

result in black hole production 3. This is the consequence of 

the vacuum solution of the Einstein’s field equations that 
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predicts the singularities in the extremely strong field and the 

production of the related black holes. Recently, it has been 

developed a new Relativistic Alpha Field Theory (RAFT) 

that extends the application of General Relativity Theory 

(GRT) to the extremely strong fields at the Planck’s scale 

16-19. This is the consequence of the following predictions 

of RAF theory:  

a) no a singularity at the Schwarzschild radius,  

b) there exists a minimal radius at r = (GM/2c2) that prevents 

singularity at r = 0, i.e. the nature protects itself, and  

c) the gravitational force becomes positive (repulsive) if 

(GM/rc2) > 1, that could be a source of a dark energy.  

Here we investigate the possibility that the gravitational 

minimal radius rpm of the Planck’s mass Mp is the regular 

smallest minimal radius in a gravitational field at all.  

   Proposition 2. Considering the relations (18) and (21) we 

can conclude that the smallest minimal radius rm (or the 

shortest meaningful length Lm = 2rm) in a gravitational field 

belongs to the particle with the smallest mass Mm. Since the 

Planck’s mass Mp , is not the smallest mass in the spacetime, 

one can conclude that the Planck’s length Lp is not the 

shortest meaningful length as the limiting distance below 

which any regular smaller distance in a gravitational field 

does not exist: 

              
2 2

pm
m p m pm

m p
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M M , r r ,
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    
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     (24) 

   Proof of the Proposition 2. In order to prove of the 

proposition 2 we can start with the general relation for the 

minimal radius (18) 
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c c
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From the equation (25) we can see that the minimal 

gravitational radius is proportional to the particle mass, where 

the constant of proportionality Kp = G/2c2. This means that 

the all masses less than Planck’s mass Mp have the minimal 

gravitational radiuses rm less than the minimal gravitational 

radius of the Planck’s mass rpm. Since the Planck’s length is 

equal to Lp=2rpm, one can conclude that the Planck’s length 

Lp is not the shortest meaningful length as the limiting 

distance below which any regular smaller distance in a 

gravitational field does not exist.   

   For an example we can use mass of the proton M. This mass 

is smaller than the Planck’s mass Mp. Therefore, the minimal 

gravitational radius of the proton rm is less than minimal 

gravitational radius of the Planck’s mass rpm : 
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                                                                                   (26) 

Consequently, the Planck’s length Lp is not the shortest 

meaningful length in a gravitational field at all. By the last 

relation in (26), the proof of the proposition 2 (that the 

Planck’s length Lp is not the shortest meaningful length in a 

gravitational field at all) is finished. 

   For an illustration, here are calculated and presented 

minimal gravitational radiuses for the proton mass M, 

Planck’s mass Mp, Earth mass Me, our Sun mass Ms and 

visible and total masses of the Universe Mv and Mt , 

respectively: 
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From (27) we can see that the minimal gravitational radiuses 

of the both universe masses are quite big. 

IV. IS THE MAXIMAL RADIAL DENSITY r max minM / r   

THE SAME FOR ALL MASSES? 

    It is very important to consider radial density 

m ii
r i mM / r  at the each i-th minimal gravitational 

radiuses of the related i-th mass. Since the minimal 

gravitational radius is the smallest radius for the related mass, 

one can anticipate that the radial density at the minimal 

gravitational radius is the maximal one. But which of them is 

the maximal maximum?  

   Proposition 3. From the equation of the minimal 

gravitational radius (18) one can see that each i-th mass Mi 

has its own minimal i-th gravitational radius rmi. But, the 

radial density of the each i-th mass at the i-th minimal 

gravitational radius is constant and same for all pairs of 

masses and minimal gravitational radiuses 
ii m( M ,r ) . At 

the same time, this radial density is the maximal one in a 

gravitational field 
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   Proof of the Proposition 3. In order to prove of the 

proposition 3, one can start with the equation for the minimal 

gravitational radius (18) 
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Since each mass has its own minimal radius, the general 

relation of (29) has the following form: 
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The minimal gravitational radius is changing by the mass 

change. But, the radial density r is the ratio of the mass and 

radius. At the minimal gravitational radius this ratio is 

constant and the same for all masses. Since the minimal 



https://doi.org/10.31871/IJNTR.5.11.21                   International Journal of New Technology and Research (IJNTR) 

                                                                                 ISSN: 2454-4116, Volume-5 Issue-11, November 2019 Pages 14-20 

                                                                                      18                                                                                 www.ijntr.org 

gravitational radius is the smallest one and mass is constant, 

the radial density at the minimal gravitational radius is the 

maximal one 

              

22
1 2

max

i

i
r

m

M c
const., i , ,.....

r G
          (31) 

By the relation (31), the proof of the proposition 3 (that the 

radial density of the each i-th mass at the i-th minimal 

gravitational radius is constant and maximal and the same for 

the all 
ii m( M ,r )pairs) is finished. 

   Finally, one can conclude that the proton mass M, Planck’s 

mass Mp, Earth mass Me, our Sun mass Ms , visible and total 

masses of the Universe Mv and Mt, as well as the all other 

masses in the universe have the same maximal radial density  

                  

2
272

2 6932 10
maxr

c
. kg / m.

G
              (32) 

Thus, if RAF theory is correct, then the maximal radial 

density for any mass in gravitational field is given by the 

relation (32).   

V. RADIAL ACCELERATION AND FORCE AT THE MINIMAL 

GRAVITATIONAL RADIUS 

   Following RAF theory, the geodesic equations for the 

coordinates x, y and z are described by the relations 18:  

       

 

   

2 2

2

0 0

0 2
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1
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x

y z
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/ , / ,

, , , ,
ct c ct c ct c x

, .
y z

     

      

       

      


 
  

      

      

      

   
   

   

 
    

 

  



  

    (33)         

Here andare field parameters that have been determined 

in 16. For the time-invariant, or very slowly changeable 

alpha field, the parameters 0x y z       , and the 

relations (33) are reduced into the simplest forms:   

              

2 2

2

0 0

0

x x y y

z z

x c , y c ,

z c .

   

 

    

 

 


       (34) 

For the radial coordinate r, the geodesic equations (34) are 

transformed into the following form 

            

2 2

2 2

0

2
1

2

r r r r

r
r r

r c , r c ,

GM GM
, .

rrc rc

   

 
   

 

    


 

     (35) 

Applying (35) we obtain radial acceleration equation valid in 

the extremely strong static gravitational field            

 
              

2 2
0 1

GM GM
, r .

r rc


 
     

 

         (36) 

   Proposition 4. The gravitational radial acceleration at the 

minimal gravitational radius is given by the relation:  

              

4 2
2

2

4 4
> 0

4

max

p

m r

p

p pm

p

Mc G c
r ,

GM M L M

c
M M r .

L

 

  







      (37) 

Here mr and pmr  are the gravitational radial accelerations at 

the minimal gravitational radius and at the Planck’s minimal 

radius pmr , respectively, while 
maxr is the maximal radial 

density equal to the constant given by (32). As we can see 

from (37) the gravitational radial acceleration at the minimal 

gravitational radius is positive (repulsive) one and could be 

the source of the dark energy 18, 19. 

   Proof of the Proposition 4. In order to prove of the 

proposition 4, one can start with the equations for the 

minimal gravitational radius (18) and for maximal 

gravitational radial density (32): 

                

2

2

2

2 maxm r
m

GM M c
r , const.

r Gc
         (38) 

Now, including of the minimal gravitational radius mr into the 

acceleration relation (36), one obtains the radial acceleration 

in gravitational field at the minimal radius: 

      

4

2 2

4
1 0m m

m m

GM GM c
r r r .

GMr r c

 
      

 

 >  (39) 

This equation can also be described as the function of the 

maximal gravitational radial density (32): 

    

4 2 2
24 2 2
maxm m r

c c c G G
r r r .

GM G G M M
       (40) 

Another possibility is the description of the radial 

acceleration at the minimal gravitational radius as the 

function of the Planck’s lent Lp: 

                    

4 2 2

2 2

4 2 2

2 4

m m

p p

pm p

c c c
r r r

GM G M

M Mc c
.

r M L M

   

 



            (41) 

It is easy to see that for the case where M is equal to the 

Planck’s mass Mp, the relation (41) is transformed into the 

radial acceleration pmr at the minimal gravitational radius of 

the Planck’s mass Mp, as the only function of the Planck’s 

lent Lp: 
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2
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4

4

p

m m

p
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p

M c
r r r ,

L M

c
M M r .

L

  

  





            (42) 

Finally, the equations (39), (40) and (41) can be described by 

one relation: 

        

4 2
24 4
max

p

m m r

p

Mc G c
r r r .

GM M L M
         (43) 

By the relations (42) and (43), the proof of the proposition 4 is 

finished.  

   Following the last relation in (43) one can see that the radial 

acceleration mr at the minimal gravitational radius is only 

function of the mass M. The other components are constants. 

In the case where pM M<  the radial acceleration mr at the 

minimal gravitational radius is increasing to the maximal 

radial acceleration 
maxmr at the minimal mass minM . In the 

case where pM M>  the radial acceleration 
mr at the 

minimal gravitational radius is decreasing to the minimal 

radial acceleration 
minmr at the maximal mass maxM . 

Finally, in the case where  pM M  the radial acceleration 


mr  at the minimal gravitational radius is equal to the radial 

acceleration p mr corresponding to the Planck’s mass and 

given by the relation (42). 

   Now, we want to know the gravitational repulsive force at 

the minimal radius, Fm. Let this force accelerates mass m=M 

to the acceleration mr . Thus, for calculation of this force, we 

can employ relations in (43): 

             

4

24
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4

44
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m m m m

p

r

p

c
r r F mr M r M

GM

c Mc
G const.

G L

    

   

 



     (44) 

As we can see from (44) the gravitational repulsive force at 

the minimal radius, Fm (for m=M) is constant and the same 

for all mases mi=Mi. Using standard units one can calculate 

this constant force: 

                

4

43

4

48 410947907 10

m m m m

c
r r F m r M r

G

. N.

    

 

 
         (45) 

From the relation in (45) we can see that this is an enormous 

large force. 

VI. CONCLUSION 

   In this paper we considered the consequences of the 

existence of the minimal radius in gravitational field that has 

been predicted by the new Relativistic Alpha Field Theory 

(RAFT). These consequences are in the connection with the 

belief that the Planck’s length Lp, is the shortest meaningful 

length as the limiting distance below which any regular 

smaller distance in the spacetime does not exist. If RAF 

theory is correct then one can find out the following 

consequences of the existence of the minimal radius in a 

gravitational field. At the first each mass has its own minimal 

radius. The minimal radius of the Planck’s mass is equal to 

half of the Planck’s length. Thus, the physical significance of 

the Planck’s length is that it is minimal (shortest) diameter of 

the Planck’s mass. Further, the smallest minimal radius in a 

gravitational field belongs to the particle with the smallest 

mass. Since, the Planck’s mass is not the smallest mass in the 

spacetime it follows that the Planck’s length is not the 

shortest meaningful length in a spacetime. The radial density 

of each mass at its minimal gravitational radius is constant, 

equal to 2c2/G, and the same and the maximal one for all pairs 

of masses and minimal gravitational radiuses. The 

gravitational radial acceleration at the minimal gravitational 

radius is positive (repulsive) one and could be the source of 

the dark energy.  
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