
https://doi.org/10.31871/IJNTR.5.9.10 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-5, Issue-9, September 2019 Pages 27-32

 27 www.ijntr.org



Abstract—In Spark, using LRU to implement RDD cache

replacement. Its metrics do not take the data characteristics of

Spark into account, resulting in memory not being effectively

utilized, affecting task execution efficiency. This paper

optimizes the LWR (Least Weight Replacement) algorithm, and

a new replacement algorithm is proposed. Considering the

parallel computing, the dependency integrity impact factor is

added to the weight calculation to make the RDD partition

weight value more accurate, so as to improve the accuracy of the

cache replacement object selection, and the relevant factor

values are dynamically adjusted according to the task execution,

so that the cache replacement can adapt to the changes in the

task execution process. The source of the experimental data set

for this article is the Stanford Network Analysis Project.

According to comparison experiments, this methods can

effectively improve task execution efficiency.

Index Terms—Parallel computing, Resilient Distributed

Dataset, Spark, self-adaptive

I. INTRODUCTION

 In the big data environment, data is exploding, data

types are complex and diverse, and the processing of data

requires powerful technical means. Spark [1] parallel

computing engine quickly occupied the market with its four

advantages: high efficiency [2], ease of use, versatility and

compatibility. Spark speeds up batch processing tasks

through sophisticated memory calculation and processing

mechanisms. Spark speeds up batch processing tasks through

sophisticated memory calculation and processing

mechanisms. On the one hand, Spark makes full use of the

cluster's memory: using Resilient Distributed Datasets (RDD)

as the data structure [3], whose all partitions can be processed

in parallel, using distributed memory to cache RDD

intermediate results, which makes Spark have a bigger

advantage than other parallel frameworks in handling

iterative machine learning. On the other hand, Spark uses a

Directed Acyclic Graph (DAG) to record the dependencies

between RDDs, which can quickly recover the lost RDD

partitions, as illustrated in Fig.1.1.

 The Spark memory caching mechanism uses LRU(Least

Recently Used) to replace the block. The metrics method in

Caili Zhao, School of Information Engineering, Henan University of

Science and Technology, Louyang 471023, Henan, P. R. China

Yong Liu, School of Information Engineering, Henan University of

Science and Technology, Louyang 471023, Henan, P. R. China

Ximei Du, School of Information Engineering, Henan University of

Science and Technology, Louyang 471023, Henan, P. R. China

Xuezhen Zhu, School of Information Engineering, Henan University of

Science and Technology, Louyang 471023, Henan, P. R. China.

LRU only considers the time factor, and does not consider the

RDD partition feature, which may result in the removal of the

RDD partition with high reusability or high recalculation

cost, which increases the task calculation time.

 DAG

Map
Join

GroupbykeyMap

RDD1 RDD3

RDD2 RDD4
RDD5

RDD7

H

D

F

S

Transformation Action

RDD1

RDD6

Map

Fig.1.1 Directed acyclic graph of the Spark program

Recognizing this problem, many scholars have studied

RDD cache optimization [4]. Duan et al. [4]proposed a

selection and replacement (WR) algorithm to improve

memory performance. Bian et al. [5] proposed a weight buffer

replacement (LWR) algorithm. However, they ignore the

factors that change the weight during execution. Jiang et

al.[6] further consider whether durability is required by

judging the cost and cost of calculation. On the basis of

studying FIFO, LRU and other cache algorithms, Yu et al.

proposed minimum reference count (LRC) [7] and minimum

effective reference technique (LERC) [8].Ho et al.[9]

proposed a cache update technique that enables users to

replace a single RDD partition by partially updating RDD,

thus avoiding the large overhead caused by loading the entire

RDD. Swain et al. [10] designed an AWRP algorithm,

calculating the weight according to the access frequency of

the object. Chen et al. [11] proposed a register allocation

(RA) replacement algorithm to replace the RDD partition

with the latest end of use time. AWRP and RA algorithms do

not consider such characteristics as RDD partition size and

recalculation cost. Meng et al. [12] fully considered the

distributed storage characteristics of RDD partitions and

pointed out the impact of complete and incomplete RDD

partitions on cache, but there was no parameter correction in

weight calculation. Liu et al. [13]proposed a new RDD

partition weight cache replacement algorithm, which

comprehensively considers the major factors affecting RDD

cache, improves the cache strategy, and improves the

Research Cache Replacement Strategy in Memory

Optimization of Spark

Caili Zhao, Yong Liu, Ximei Du, Xuezhen Zhu

Research Cache Replacement Strategy in Memory Optimization of Spark

 28 www.ijntr.org

execution efficiency of Spark. But it does not consider the

integrity of partition dependencies.

In the above cache replacement strategy optimization

research, although the computational performance is

improved relative to the original Spark, the consideration of

the RDD partitioning characteristics is still not

comprehensive enough, so we improve the weight

replacement algorithm. This method reduces the impact of

memory resource bottlenecks and improves task execution

efficiency. Compared with existing research, this method can

further improve the performance of Spark computing.

The remainder of this paper is organized as follows.

Section 2 introduces the background. Section 3 gives the

cache replacement model of Spark and shows the proposed

algorithm. The theoretical analysis and experiment are

illustrated in Section 4. Finally, we make a conclusion in

Section 5.

II. BACKGROUND

A. Resilient Distributed Datasets

Resilient Distributed Datasets (RDD) is the most basic

abstraction of Spark. It is an abstract use of distributed

memory and implements an abstract implementation of

operating distributed datasets by manipulating local

collections. Spark programming is built around the creation

and execution of operations on the RDD. RDD is the core of

Spark. An RDD is a collection of distributed objects. It is

essentially a read-only collection of partition records. Each

RDD can be divided into multiple partitions.

Fig.2.1 shows the program flow in Spark and the

distributed storage of RDDs in the cluster. RDD supports four

operations: creation, transformation, control, and action

operations. The conversion operation builds most of the

dependencies between the RDDs. When the RDD is partially

lost for some reason, the missing RDDs can be recalculated

based on the dependencies. In the conversion process, only

the action operation takes place, the actual operation will be

carried out. Control operations can cache some re-used RDDs

into storage memory, effectively reducing computational

costs.

HDFS/Hbase

External storage

system

Scala

Set

Scala

scalar

RDD1

 …RDD1-1 RDD1-2 RDD1-m

 … …RDD1-1 RDD1-2 RDD1-m-1 RDD1-m

Node 1 Node n

Control

Action

Ctreate

Transformation

…

Fig.2.1 Program flow of RDD in Spark

B. LRU Cache Replacement Strategy for RDD

Currently, the Spark cache mechanism uses LRU

replacement Strategy to replace block. LRU is a classic

replacement algorithm, based on the assumption that data

which not used for a long time is not likely to be used in the

future. The operations of LRU has three types, such as

insertion, search and replacement as showed in Fig.2.2. First,

the newly added data is inserted into the head of the linked

list. Second, the accessed data is moved to the linked list

header. Third, when the storage space of the linked list is

insufficient, the data at the end of the linked list is discarded.

1.Insert

2.Access

3.Eliminate

Header

Footer

Fig.2.2 The principle of LRU

In Spark, the LRU replacement algorithm is

implemented by a double-linked list feature. In Spark,

different RDD partitions in the same storage memory are

heterogeneous, that is, they are different in size and frequency

of use. In this case, considering only the time factor leads to a

lot of unnecessary calculations. Both cache replacement and

memory recovery do not meet the requirements of task

calculation. Therefore, it is necessary to develop a

replacement algorithm based on the characteristics of RDD

partitions, and dynamically adjust the value of the partition

features to increase its adaptability and improve the accuracy

of the replacement.

III. CACHE REPLACEMENT MODEL OF SPARK

Spark divides the RDD into multiple partitions and

submits them to the worker nodes for parallel computing. In

Spark, each task contains multiple RDDs, and the number of

uses of each RDD may be different. Here, the set of <RDD,

NR> of key-value pairs represents RDDs,

  1 1 2 2, , , ,..., ,n nR RDD NR RDD NR RDD NR (1)

In the formula, NR is the number of RDD used times in

the task’s executing process. Since each RDD consists of

multiple partitions.

And we use ijR to express the partition of RDD.

A. Feature analysis

(1) Frequency of use

Different RDDs in Spark have different access

frequencies, and the frequency of access is reduced during the

running of the program. When an action occurs, the DAG

Scheduler creates a DAG based on the RDD's lineage. By

traversing the DAG map, we use G<R, NR> to represent the

https://doi.org/10.31871/IJNTR.5.9.10 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-5, Issue-9, September 2019 Pages 27-32

 29 www.ijntr.org

DAG, where NR represents the degree of RDD in the DAG

graph.

The total frequency of the RDD (UF) which used

during the entire task calculation process can reflect the

importance of RDD to a certain extent, and the RDD with

high total frequency of use should be preferred for caching.

The specific formula is expressed as followed:

i iR RUF N (2)

Use a counter to record the number of times RDD has

been used by monitoring the use of RDD, notes forVN , The

RDD remaining usage frequency during the running of the

program can be expressed as:

i i iR R RRVN UF VN  (3)

Initialization, the remaining usage of the RDD partition

is equal to the remaining frequency of the RDD in which it

resides. The specific formula is as follows:

ij iR RRVN RVN (4)

(2) Partition size

When other attributes are consistent, the partitions

occupying a large memory space should be preferentially

deleted to release more resources. We use ijRS to express

the size of RDD partition.
(3) Calculation cost

When the cache memory is insufficient, the LRU release

the least recently used partition by considering the time

characteristics of the partition. When the deleted partition is

reused, it needs to be recalculated, which will generate

unnecessary computational overhead. Therefore, partitions

with higher cost calculations should not be replaced. Here, we

use the definition of the computational cost of the RDD

partition in [5]. The partition is the parent RDD partition on

which it depends and is generated by various operator

calculations. ijR P is the parent RDD partition set of ijR . The

calculation time of the RDD partition is the sum of the read

time and the execution time, namely:

ij ij ijR R P RT RT ET  (5)

If all the partitions in the ijR P collection are stored in

memory, the data read time can be ignored， 0ijR PRT  .

Use the partition calculation time as the only indicator to

measure the cost of the calculation, namely:

Cos ij ijR Rt T (6)

(4) Dependency integrity

Data parallel tasks typically rely on multiple input data

blocks. Unless all of these blocks are cached in memory, they

won't speed up. PACMan [14] attempts to satisfy the "all or

nothing" attribute of cache management in a parallel cluster.

However, PACMan does not know the semantics of the job

DAG. Its goal is to accelerate data sharing between different

jobs by caching the complete data set (HDFS file).

The DAG diagram shown in Fig.1.1, RDD3 and RDD5

generate RDD7 through the Join operator. An RDD partition

corresponds to one data block. Then the calculation of the

partition RDD7-1 depends on RDD3-1 and RDD5-1, and the

calculation of the partition RDD7-2 depends on RDD3-2 and

RDD5-2. We call this a dependency group, and the

dependency information is obtained from the data-dependent

DAG. The generation of RDD7-1 is not accelerated unless the

elements in the dependency group (RDD3-1, RDD5-1) are

cached in memory. The elements in the dependency group are

called peer partitions. If all the elements in the dependency

group are cached in memory, they are called complete

dependency groups. When other attributes are consistent, the

partitions in the incomplete dependency group should be

preferentially deleted.

Definition1 dependency integrity. The RDD

dependency integrity is quantified to represent the dependent

integrity of the RDD partition and is expressed as ijRRC . If

there is a dependency group containing ijR , it is used to

record the number of complete dependency groups,

initialized to 0RijRC  . If there is no dependency group

including ijR , 1RijRC  .then the value is unchanged during

the running of the program.

B. Weight model

Considering the above-mentioned partition use

frequency, partition size, calculation cost and partition

dependency integrity, the weight model is constructed by

linear weighted accumulation method. The weight

calculation formula of the partition is as shown in formula

(7):

 

Cos

, , , 0, 1

ij ij ij ij ijR R R R RW aRVN bS +c t +dRC

 a b c d a b c d

 

    
 (7)

ijRW is the weight value of the No. j partition. , , ,a b c d

are used to adjust the weight of the above four decision

factors, and the selection of the weight value is determined by

the specific task requirements of the user.

C. Performance Evaluation Model

Definition2 Task execution speedup. Using optS to

indicate the task execution speedup, which is used to measure

the performance of Spark after optimization. The higher the

speedup ratio, the better the Spark performance. The formula

is as follows:

originalSpark
opt

opt

T
S

T
 (8)

originalSparkT is expressed as the executing time of the task

on the original Spark, optT is expressed as the executing time

of the task on the Spark after optimistic.

D. Self-adaptive Weight Cache Replacement Algorithm

Aiming at the shortcomings of using LRU algorithm in

Spark, the existing weight substitution algorithm LWR[6] is

improved, and a new RDD cache replacement algorithm-

Self-adaptive Weight Cache Replace Algorithm (SWCR) is

proposed. The main idea of the algorithm is to compare the

weight values to form a partition list to be replaced.

The pseudo code of the improved weight cache

replacement algorithm is shown in Table 2. In this algorithm,

after replacing the RDD partition, the weight of the RDD

partition stored in the memory is updated for use in the next

replacement.

Research Cache Replacement Strategy in Memory Optimization of Spark

 30 www.ijntr.org

Table 1 Self-adaptive Weight Cache Replacement Algorithm

Algorithm 1：Self-adaptive Weight Cache Replacement

Algorithm SWCR

Input ： Weight map of RDD partition: WList

Partition is ready to cache:P

The Weight of P:W

The size of P: S

Initialized： The Replace list : rpList new list

The sum sizes of the List ： rpListSize 0

1. for((RP,WRP) WList) 

2. if (W WRP) then

3. rpList..add(RDD)

4. end if

5. end for

6. if (rpList.lenght 0) then

7. return

8. end if

9. rpList.drderByWeight()

10. for(i 0 until rpList.length)

11. rpListSize rpList[i].size 

12. if (rpListSize RFMemSize S) then 

13. for(j 0 to i)

14. dropBlock(rpList[j])

15. WList.delete(rpList[j])

16. end for

17. cachePartition(p)

18. WList.add(p,W)

19. Renew WList

20. return

21. end if

22. end for

23. rpList.clean()

The specific steps of Algorithm 1:

(1) Get the weight and size of the RDD partition to be

cached.

(2) Perform conditional filtering on the cached RDD

partition, and put the object whose weight value is smaller

than the partition to be cached into the list to be replaced.

(3) If the list of partitions to be replaced is empty, the

partition is not cached.

(4) Otherwise, the list of replaced partitions is sorted

by weight. Traversing the replacement list, when the sum of

the size of the free memory and the replacement list is larger

than the size of the partition to be cached, the traversal is

stopped, the traversed partition to be replaced is moved out of

the cache, the memory is released, and the corresponding

weight is also moved out of the weight mapping, after which

Cache the partition to be cached and add the partition weight

to the weight map. Update weight mapping collections (some

RDDs may be affected by the number of uses after their

application, affecting the weight).

(5) When the sum of the size of the free memory and

the replacement list is smaller than the size of the partition to

be cached, the partition is not cached and the list to be

replaced is cleared.

IV. THEORETICAL ANALYSIS AND EXPERIMENTS

A. Comparison of Cache Replacement Algorithm

At present, there are many weight buffer replacement

algorithms for Spark has been proposed, and the weight

calculation involves parameters including the frequency, size,

and calculation cost of the replacement target. In the

following, The new minimum weight cache replacement

algorithm SWCR we proposed compared with the LWR

proposed in [5] and the cache replacement algorithm LRU

used in Spark, as shown in Table 2.

Table 2 Comparison of related cache replacement algorithms

 algorithm

parameter
LWR LRU SWCR

replace target RDD
RDD

partition

RDD

partition

usage frequency Yes No Yes

Partition size No No Yes

Computing cost Yes No Yes

Dependency integrity No No Yes

Correction parameter Yes No Yes

LWR's calculation of weights is based on the

assumption that two RDDs with the same frequency of use

and equal computational cost are not present in the task, so

the influence factor of the RDD partition size is ignore.

Compared with the SWCR proposed in this paper, the weight

influence factors considered by LWR are not comprehensive

enough, and in the case of insufficient memory, the RDD to

be replaced by the weight is determined, and the replacement

of the entire RDD may affect the execution of other tasks.

SWCR not only considers the size of the RDD partition, but

also replaces the target with an RDD partition. It is more

accurate than the LWR in the replacement partition selection.

LRU ignores Spark’s data characteristics when

performing memory replacement, considers only the time

factor in which RDD is accessed in memory. And when the

RDD partition with high reutilization rate or high

recalculation cost is replaced because it has not been used

recently, it will cause unnecessary computational costs and

affect application execution efficiency. The SWCR

replacement algorithm in this paper comprehensively

considers several factors affecting RDD partitions. The linear

weighted accumulation method is used to construct the

weight calculation model. The weight value comparison can

replace the relatively insignificant RDD partition more

accurately, so that the memory can be fully obtained, thereby

improve application execution efficiency and improve Spark

computing performance.

B. Experimental design and results evaluation

Setting up a Spark cluster to verify the effectiveness of

memory cache optimization in this article.

Set up an experimental environment on a server Think

Server whose operating system is Ubuntu14.4, create 4

https://doi.org/10.31871/IJNTR.5.9.10 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-5, Issue-9, September 2019 Pages 27-32

 31 www.ijntr.org

virtual machines on the server, use these four virtual

machines to build a Spark cluster, one of which is the master

node, and the other three as worker nodes. Use Spark 2.4.0 as

a parallel computing processing framework, Hadoop 3.7 and

Hadoop yarn are used as resource scheduling modules. Use

PageRank as the task algorithm, because PageRank algorithm

is a typical data-intensive algorithm, it will involve multiple

iterations. And it will effectively improve the efficiency of

calculation when using cache. The experimental data was

selected from the standard dataset provided by SNAP [15],

from which two datasets were selected. The dataset details are

shown in Table 3.

Table 3 SNAP data set

Name Nodes Edges Description

web-Google 875,713 5,105,039
Web graph from

Google

web-Stanford 281,903 2,312,497
Web graph of

Stanford.edu

(1) Algorithm verification

In order to verify SWCR, we implemented SWCR on

the Spark platform. The initial weight values for each factor

of SMWCR are A= {a, b, c, d} = {0.4, 0.3, 0.2, 0.1}. In order

to contrast with the SWCR proposed in this paper, Spark's

own cache replacement algorithm LRU is selected for

comparison.

We select two data sets with large differences in size to

test the PageRank algorithm in the experiment. Use Spark's

default cache replacement algorithm to record the results of

different iterations. The number of iterations is ten-fold

cross-validation. The running time of each algorithm is

recorded. The average value calculated is the execution time

of the iterations. Then use the new weight buffer replacement

algorithm for the same experiment, averaging the execution

time of the records. The number of iterations is 2, 4, 6, 8, 10

respectively. Experiments were carried out under the

conditions that the executor memory was 1G, 2G, and 3G.

The experimental results are compared as shown in Fig.4.1

Fig.4.1 shows a comparison of execution times

with LRU and SWCR in different memory

configurations. Under the same data set, SWCR can

effectively reduce execution time relative to LRU.

Under the same memory condition, when the data set is

larger, the efficiency of SWCR to improve the

efficiency of PageRank is more obvious. Comparing the

Fig4.1 (a), (b), and (c), we can see when the memory is

1G, its performance is relatively poor because it takes

up memory for the calculation of weights. The larger

the memory, the better the performance. When the

memory is large enough, the advantages of the

minimum weight cache replacement algorithm are no

longer significant.

(a) Comparison of task execution time when memory is 1G

(b) Comparison of task execution time when memory is 2G

(c) Comparison of task execution time when memory is 3G

Fig.4.1 LRU and SMWCR execution time comparison in

different memory configurations

(2) Performance evaluation

The effectiveness of the SWCR in this paper is verified

by comparing the task execution speedup. Executor memory

is 2G, calculate and record the task execution speedup

according to formula (8), as shown in Fig.4.2. Compared with

the Spark task execution speedup comparison using the LWR

[5], it can be seen that SWCR optimizes the Spark memory

cache better than LWR, and SWCR can further improve the

Spark computing performance.

http://snap.stanford.edu/data/web-Google.html
http://snap.stanford.edu/data/web-Stanford.html

Research Cache Replacement Strategy in Memory Optimization of Spark

 32 www.ijntr.org

Fig.4.2 Spark computing performance evaluation

comparison

V. CONCLUSION

In Spark, when there is insufficient storage memory,

Spark adopts the LRU to select the Block to be replaced. It

does not consider the RDD partition influencing factors. In

this paper, we use the weight replacement algorithm and

improve it. Dependency integrity is added to the minimum

weight cache replacement algorithm, and the value of each

partition feature can be dynamically adjusted according to the

task execution condition, which increases the adaptability for

cache replacement and improves the task execution efficiency

under the memory bottleneck. The comprehensive evaluation

proves that the replacement algorithm this paper proposed

can effectively improves the performance of Spark

computing.

REFERENCES

[1] Zaharia M, Das T, Li H, et a1．Discretized streams： An efficient and

fault-tolerant model for stream processing on large clusters [A]．

Proceedings of the 4th USENIX Workshop on Hot Topics in Cloud

Computing[C]．Boston，MA：USEN／X，2012, pp.1-6．

[2] Zaharia M, Chowdhury M, Franklin M, et al. Spark: cluster computing

with working sets [C]. Usenix Conference on Hot Topics in Cloud

Computing, 2010, 15(1) ：pp.10-10.

[3] Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets

： a fault-tolerant abstraction for in-memory cluster

computing[C]//Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation，2012,pp.1-14

[4] Duan M , Li K , Tang Z , et al. Selection and replacement algorithms

for memory performance improvement in Spark[J]. Concurrency and

Computation: Practice and Experience, 2016, 28(8):2473-2486.

[5] Bian, C.; Yu, J.; Ying, C. T.; Xiu, W. R. (2017): Self-adaptive strategy

for cache management in spark. Acta Electronica Sinica, vol. 45, no. 2,

pp. 278-284.

[6] Jiang ZP, Chen HP, Zhou H, et al. An elastic data persisting solution

with high performance for spark[C]. IEEE International Conference on

Smart City/ Socialcom/ Sustaincom, 2016:pp.656-661.

[7] Yu Y, Wang W, Zhang J, et al. LRC: Dependency-aware cache

management for data analytics clusters[C]// IEEE INFOCOM 2017 -

IEEE Conference on Computer Communications. IEEE, 2017.

[8] Yu Y, Wang W, Zhang J, et al. LERC: Coordinated Cache

Management for Data-Parallel Systems[C]// GLOBECOM 2017 - 2017

IEEE Global Communications Conference. IEEE, 2017.

[9] Ho L Y , Wu J J , Liu P , et al. Efficient Cache Update for In-Memory

Cluster Computing with Spark[C]// IEEE/ ACM International

Symposium on Cluster. IEEE, 2017.21-30

[10] Swain D, Paikaray B, Swain D. AWRP: Adaptive Weight Ranking

Policy for Improving Cache Performance [J]. Computer Science,

2011:209-214

[11] CHEN K, WANG B, FENG L. Data Object Cache in Spark Computing

Engine [J]. ZTE Technology Journal, 2016, 22(2):pp.23-27.

[12] Meng, H. T.; Yu, S. P.; Liu, F.; Xiao, N. (2017): Research on memory

management and cache replacement policies in spark. Computer

Science, vol. 44, no. 6, pp. 31-35

[13] LIU H, TAN L. New RDD Partition Weight Cache Replacement

Algorithm in Spark [J]. Journal of Chinese Mini-Micro Computer

Systems, 2018, 39(10):pp.153-158.

[14] Ananthanarayanan G, Ghodsi A, Wang A, et al. PACMan: Coordinated

Memory Caching for Parallel Jobs [J]. Usenix Nsdi, 2012:pp.20-20.

[15] SNAP （ 2019 ） ： Stanford network analysis project.

http://snap.stanford.edu/data/

http://snap.stanford.edu/data/

