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 

Abstract—In Spark, using LRU to implement RDD cache 

replacement. Its metrics do not take the data characteristics of 

Spark into account, resulting in memory not being effectively 

utilized, affecting task execution efficiency. This paper 

optimizes the LWR (Least Weight Replacement) algorithm, and 

a new replacement algorithm is proposed. Considering the 

parallel computing, the dependency integrity impact factor is 

added to the weight calculation to make the RDD partition 

weight value more accurate, so as to improve the accuracy of the 

cache replacement object selection, and the relevant factor 

values are dynamically adjusted according to the task execution, 

so that the cache replacement can adapt to the changes in the 

task execution process. The source of the experimental data set 

for this article is the Stanford Network Analysis Project. 

According to comparison experiments, this methods can 

effectively improve task execution efficiency. 

 

Index Terms—Parallel computing, Resilient Distributed 

Dataset, Spark, self-adaptive 

  

I. INTRODUCTION 

  In the big data environment, data is exploding, data 

types are complex and diverse, and the processing of data 

requires powerful technical means. Spark [1] parallel 

computing engine quickly occupied the market with its four 

advantages: high efficiency [2], ease of use, versatility and 

compatibility. Spark speeds up batch processing tasks 

through sophisticated memory calculation and processing 

mechanisms. Spark speeds up batch processing tasks through 

sophisticated memory calculation and processing 

mechanisms. On the one hand, Spark makes full use of the 

cluster's memory: using Resilient Distributed Datasets (RDD) 

as the data structure [3], whose all partitions can be processed 

in parallel, using distributed memory to cache RDD 

intermediate results, which makes Spark have a bigger 

advantage than other parallel frameworks in handling 

iterative machine learning. On the other hand, Spark uses a 

Directed Acyclic Graph (DAG) to record the dependencies 

between RDDs, which can quickly recover the lost RDD 

partitions, as illustrated in Fig.1.1. 

 The Spark memory caching mechanism uses LRU(Least 

Recently Used) to replace the block. The metrics method in 
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LRU only considers the time factor, and does not consider the 

RDD partition feature, which may result in the removal of the 

RDD partition with high reusability or high recalculation 

cost, which increases the task calculation time. 

 

    DAG                       

Map
Join

GroupbykeyMap

RDD1 RDD3

RDD2 RDD4
RDD5

RDD7

H

D

F

S

Transformation Action

RDD1

RDD6

Map

 
Fig.1.1   Directed acyclic graph of the Spark program 

 

Recognizing this problem, many scholars have studied 

RDD cache optimization [4]. Duan et al. [4]proposed a 

selection and replacement (WR) algorithm to improve 

memory performance. Bian et al. [5] proposed a weight buffer 

replacement (LWR) algorithm. However, they ignore the 

factors that change the weight during execution. Jiang et 

al.[6] further consider whether durability is required by 

judging the cost and cost of calculation. On the basis of 

studying FIFO, LRU and other cache algorithms, Yu et al. 

proposed minimum reference count (LRC) [7] and minimum 

effective reference technique (LERC) [8].Ho et al.[9] 

proposed a cache update technique that enables users to 

replace a single RDD partition by partially updating RDD, 

thus avoiding the large overhead caused by loading the entire 

RDD. Swain et al. [10] designed an AWRP algorithm, 

calculating the weight according to the access frequency of 

the object. Chen et al. [11] proposed a register allocation 

(RA) replacement algorithm to replace the RDD partition 

with the latest end of use time. AWRP and RA algorithms do 

not consider such characteristics as RDD partition size and 

recalculation cost. Meng et al. [12] fully considered the 

distributed storage characteristics of RDD partitions and 

pointed out the impact of complete and incomplete RDD 

partitions on cache, but there was no parameter correction in 

weight calculation. Liu et al. [13]proposed a new RDD 

partition weight cache replacement algorithm, which 

comprehensively considers the major factors affecting RDD 

cache, improves the cache strategy, and improves the 
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execution efficiency of Spark. But it does not consider the 

integrity of partition dependencies. 

In the above cache replacement strategy optimization 

research, although the computational performance is 

improved relative to the original Spark, the consideration of 

the RDD partitioning characteristics is still not 

comprehensive enough, so we improve the weight 

replacement algorithm. This method reduces the impact of 

memory resource bottlenecks and improves task execution 

efficiency. Compared with existing research, this method can 

further improve the performance of Spark computing. 

The remainder of this paper is organized as follows. 

Section 2 introduces the background. Section 3 gives the 

cache replacement model of Spark and shows the proposed 

algorithm. The theoretical analysis and experiment are 

illustrated in Section 4. Finally, we make a conclusion in 

Section 5. 

II. BACKGROUND 

A. Resilient Distributed Datasets 

Resilient Distributed Datasets (RDD) is the most basic 

abstraction of Spark. It is an abstract use of distributed 

memory and implements an abstract implementation of 

operating distributed datasets by manipulating local 

collections. Spark programming is built around the creation 

and execution of operations on the RDD. RDD is the core of 

Spark. An RDD is a collection of distributed objects. It is 

essentially a read-only collection of partition records. Each 

RDD can be divided into multiple partitions. 

Fig.2.1 shows the program flow in Spark and the 

distributed storage of RDDs in the cluster. RDD supports four 

operations: creation, transformation, control, and action 

operations. The conversion operation builds most of the 

dependencies between the RDDs. When the RDD is partially 

lost for some reason, the missing RDDs can be recalculated 

based on the dependencies. In the conversion process, only 

the action operation takes place, the actual operation will be 

carried out. Control operations can cache some re-used RDDs 

into storage memory, effectively reducing computational 

costs.  
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Fig.2.1   Program flow of RDD in Spark 

 

 

B. LRU Cache Replacement Strategy for RDD 

Currently, the Spark cache mechanism uses LRU 

replacement Strategy to replace block. LRU is a classic 

replacement algorithm, based on the assumption that data 

which not used for a long time is not likely to be used in the 

future. The operations of LRU has three types, such as 

insertion, search and replacement as showed in Fig.2.2. First, 

the newly added data is inserted into the head of the linked 

list. Second, the accessed data is moved to the linked list 

header. Third, when the storage space of the linked list is 

insufficient, the data at the end of the linked list is discarded. 

1.Insert

2.Access

3.Eliminate

Header

Footer

 
Fig.2.2   The principle of LRU 

 
In Spark, the LRU replacement algorithm is 

implemented by a double-linked list feature. In Spark, 

different RDD partitions in the same storage memory are 

heterogeneous, that is, they are different in size and frequency 

of use. In this case, considering only the time factor leads to a 

lot of unnecessary calculations. Both cache replacement and 

memory recovery do not meet the requirements of task 

calculation. Therefore, it is necessary to develop a 

replacement algorithm based on the characteristics of RDD 

partitions, and dynamically adjust the value of the partition 

features to increase its adaptability and improve the accuracy 

of the replacement. 

III. CACHE REPLACEMENT MODEL OF SPARK 

Spark divides the RDD into multiple partitions and 

submits them to the worker nodes for parallel computing. In 

Spark, each task contains multiple RDDs, and the number of 

uses of each RDD may be different. Here, the set of <RDD, 

NR> of key-value pairs represents RDDs, 

  1 1 2 2, , , ,..., ,n nR RDD NR RDD NR RDD NR   (1) 

In the formula, NR  is the number of RDD used times in 

the task’s executing process. Since each RDD consists of 

multiple partitions. 

And we use ijR to express the partition of RDD. 

A. Feature analysis 

(1) Frequency of use 

Different RDDs in Spark have different access 

frequencies, and the frequency of access is reduced during the 

running of the program. When an action occurs, the DAG 

Scheduler creates a DAG based on the RDD's lineage. By 

traversing the DAG map, we use G<R, NR> to represent the 
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DAG, where NR represents the degree of RDD in the DAG 

graph. 

The total frequency of the RDD ( UF ) which used 

during the entire task calculation process can reflect the 

importance of RDD to a certain extent, and the RDD with 

high total frequency of use should be preferred for caching. 

The specific formula is expressed as followed: 

i iR RUF N                                 (2) 

Use a counter to record the number of times RDD has 

been used by monitoring the use of RDD, notes forVN , The 

RDD remaining usage frequency during the running of the 

program can be expressed as: 

i i iR R RRVN UF VN                         (3)                               

Initialization, the remaining usage of the RDD partition 

is equal to the remaining frequency of the RDD in which it 

resides. The specific formula is as follows: 

ij iR RRVN RVN                             (4) 

(2) Partition size 

When other attributes are consistent, the partitions 

occupying a large memory space should be preferentially 

deleted to release more resources. We use ijRS  to express 

the size of RDD partition. 
(3) Calculation cost  

When the cache memory is insufficient, the LRU release 

the least recently used partition by considering the time 

characteristics of the partition. When the deleted partition is 

reused, it needs to be recalculated, which will generate 

unnecessary computational overhead. Therefore, partitions 

with higher cost calculations should not be replaced. Here, we 

use the definition of the computational cost of the RDD 

partition in [5]. The partition is the parent RDD partition on 

which it depends and is generated by various operator 

calculations. ijR P  is the parent RDD partition set of ijR . The 

calculation time of the RDD partition is the sum of the read 

time and the execution time, namely: 

                         
ij ij ijR R P RT RT ET                           (5) 

If all the partitions in the ijR P  collection are stored in 

memory, the data read time can be ignored， 0ijR PRT  . 

Use the partition calculation time as the only indicator to 

measure the cost of the calculation, namely: 

   
Cos ij ijR Rt T                            (6) 

(4) Dependency integrity 

Data parallel tasks typically rely on multiple input data 

blocks. Unless all of these blocks are cached in memory, they 

won't speed up. PACMan [14] attempts to satisfy the "all or 

nothing" attribute of cache management in a parallel cluster. 

However, PACMan does not know the semantics of the job 

DAG. Its goal is to accelerate data sharing between different 

jobs by caching the complete data set (HDFS file). 

The DAG diagram shown in Fig.1.1, RDD3 and RDD5 

generate RDD7 through the Join operator. An RDD partition 

corresponds to one data block. Then the calculation of the 

partition RDD7-1 depends on RDD3-1 and RDD5-1, and the 

calculation of the partition RDD7-2 depends on RDD3-2 and 

RDD5-2. We call this a dependency group, and the 

dependency information is obtained from the data-dependent 

DAG. The generation of RDD7-1 is not accelerated unless the 

elements in the dependency group (RDD3-1, RDD5-1) are 

cached in memory. The elements in the dependency group are 

called peer partitions. If all the elements in the dependency 

group are cached in memory, they are called complete 

dependency groups. When other attributes are consistent, the 

partitions in the incomplete dependency group should be 

preferentially deleted.  

Definition1 dependency integrity. The RDD 

dependency integrity is quantified to represent the dependent 

integrity of the RDD partition and is expressed as ijRRC  . If 

there is a dependency group containing ijR , it is used to 

record the number of complete dependency groups, 

initialized to 0RijRC  . If there is no dependency group 

including ijR , 1RijRC  .then the value is unchanged during 

the running of the program. 

B. Weight model 

Considering the above-mentioned partition use 

frequency, partition size, calculation cost and partition 

dependency integrity, the weight model is constructed by 

linear weighted accumulation method. The weight 

calculation formula of the partition is as shown in formula 

(7): 

 

Cos

, , , 0, 1

ij ij ij ij ijR R R R RW aRVN bS +c t +dRC

   a b c d a b c d

 

    
            (7)                

ijRW  is the weight value of the No. j partition. , , ,a b c d  

are used to adjust the weight of the above four decision 

factors, and the selection of the weight value is determined by 

the specific task requirements of the user. 

C. Performance Evaluation Model 

Definition2 Task execution speedup. Using optS  to 

indicate the task execution speedup, which is used to measure 

the performance of Spark after optimization. The higher the 

speedup ratio, the better the Spark performance. The formula 

is as follows: 

originalSpark
opt

opt

T
S

T
                           (8) 

originalSparkT is expressed as the executing time of the task 

on the original Spark, optT  is expressed as the executing time 

of the task on the Spark after optimistic.  

D. Self-adaptive Weight Cache Replacement Algorithm 

Aiming at the shortcomings of using LRU algorithm in 

Spark, the existing weight substitution algorithm LWR[6] is 

improved, and a new RDD cache replacement algorithm- 

Self-adaptive Weight Cache Replace Algorithm (SWCR) is 

proposed. The main idea of the algorithm is to compare the 

weight values to form a partition list to be replaced.  

The pseudo code of the improved weight cache 

replacement algorithm is shown in Table 2. In this algorithm, 

after replacing the RDD partition, the weight of the RDD 

partition stored in the memory is updated for use in the next 

replacement. 
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Table 1 Self-adaptive Weight Cache Replacement Algorithm 

Algorithm 1：Self-adaptive Weight Cache Replacement 

Algorithm SWCR 

Input    ： Weight map of RDD partition: WList   

Partition is ready to cache:P  

The Weight of P:W  

The size of P: S 

Initialized：  The Replace list : rpList  new list   

The sum sizes of the List ： rpListSize  0   

 

1. for((RP,WRP) WList)   

2.      if (W WRP) then  

3.           rpList..add(RDD)  

4.        end if  

5. end for  

6. if (rpList.lenght 0) then  

7.        return  

8. end if  

9. rpList.drderByWeight()  

10.      for(i 0 until rpList.length)  

11.               rpListSize  rpList[i].size   

12.               if (rpListSize RFMemSize S) then   

13.                        for( j 0 to i)  

14.                                dropBlock(rpList[ j])  

15.                                WList.delete(rpList[ j])  

16.                       end for  

17.                       cachePartition(p)  

18.                       WList.add(p,W)  

19.                       Renew WList  

20.                       return  

21.              end if  

22.       end for  

23. rpList.clean()   

The specific steps of Algorithm 1: 

(1) Get the weight and size of the RDD partition to be 

cached.  

(2) Perform conditional filtering on the cached RDD 

partition, and put the object whose weight value is smaller 

than the partition to be cached into the list to be replaced. 

(3) If the list of partitions to be replaced is empty, the 

partition is not cached. 

(4) Otherwise, the list of replaced partitions is sorted 

by weight. Traversing the replacement list, when the sum of 

the size of the free memory and the replacement list is larger 

than the size of the partition to be cached, the traversal is 

stopped, the traversed partition to be replaced is moved out of 

the cache, the memory is released, and the corresponding 

weight is also moved out of the weight mapping, after which 

Cache the partition to be cached and add the partition weight 

to the weight map. Update weight mapping collections (some 

RDDs may be affected by the number of uses after their 

application, affecting the weight). 

(5) When the sum of the size of the free memory and 

the replacement list is smaller than the size of the partition to 

be cached, the partition is not cached and the list to be 

replaced is cleared. 

IV.  THEORETICAL ANALYSIS AND EXPERIMENTS 

A. Comparison of Cache Replacement Algorithm 

At present, there are many weight buffer replacement 

algorithms for Spark has been proposed, and the weight 

calculation involves parameters including the frequency, size, 

and calculation cost of the replacement target. In the 

following, The new minimum weight cache replacement 

algorithm SWCR we proposed compared with the LWR 

proposed in [5] and the cache replacement algorithm LRU 

used in Spark, as shown in Table 2. 

 

Table 2 Comparison of related cache replacement algorithms 

                algorithm 

parameter   
LWR LRU SWCR 

replace target RDD 
RDD 

partition 

RDD 

partition 

usage frequency Yes No Yes 

Partition size No No Yes 

Computing cost Yes No Yes 

Dependency integrity No No Yes 

Correction parameter Yes No Yes 

  
LWR's calculation of weights is based on the 

assumption that two RDDs with the same frequency of use 

and equal computational cost are not present in the task, so 

the influence factor of the RDD partition size is ignore. 

Compared with the SWCR proposed in this paper, the weight 

influence factors considered by LWR are not comprehensive 

enough, and in the case of insufficient memory, the RDD to 

be replaced by the weight is determined, and the replacement 

of the entire RDD may affect the execution of other tasks. 

SWCR not only considers the size of the RDD partition, but 

also replaces the target with an RDD partition. It is more 

accurate than the LWR in the replacement partition selection. 

LRU ignores Spark’s data characteristics when 

performing memory replacement, considers only the time 

factor in which RDD is accessed in memory. And when the 

RDD partition with high reutilization rate or high 

recalculation cost is replaced because it has not been used 

recently, it will cause unnecessary computational costs and 

affect application execution efficiency. The SWCR 

replacement algorithm in this paper comprehensively 

considers several factors affecting RDD partitions. The linear 

weighted accumulation method is used to construct the 

weight calculation model. The weight value comparison can 

replace the relatively insignificant RDD partition more 

accurately, so that the memory can be fully obtained, thereby 

improve application execution efficiency and improve Spark 

computing performance. 

B. Experimental design and results evaluation 

Setting up a Spark cluster to verify the effectiveness of 

memory cache optimization in this article. 

Set up an experimental environment on a server Think 

Server whose operating system is Ubuntu14.4, create 4 
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virtual machines on the server, use these four virtual 

machines to build a Spark cluster, one of which is the master 

node, and the other three as worker nodes. Use Spark 2.4.0 as 

a parallel computing processing framework, Hadoop 3.7 and 

Hadoop yarn are used as resource scheduling modules. Use 

PageRank as the task algorithm, because PageRank algorithm 

is a typical data-intensive algorithm, it will involve multiple 

iterations. And it will effectively improve the efficiency of 

calculation when using cache. The experimental data was 

selected from the standard dataset provided by SNAP [15], 

from which two datasets were selected. The dataset details are 

shown in Table 3. 

  
Table 3   SNAP data set 

Name Nodes Edges Description 

web-Google 875,713 5,105,039 
Web graph from 

Google 

web-Stanford 281,903 2,312,497 
Web graph of 

Stanford.edu 

 

(1) Algorithm verification  

In order to verify SWCR, we implemented SWCR on 

the Spark platform. The initial weight values for each factor 

of SMWCR are A= {a, b, c, d} = {0.4, 0.3, 0.2, 0.1}. In order 

to contrast with the SWCR proposed in this paper, Spark's 

own cache replacement algorithm LRU is selected for 

comparison. 

We select two data sets with large differences in size to 

test the PageRank algorithm in the experiment. Use Spark's 

default cache replacement algorithm to record the results of 

different iterations. The number of iterations is ten-fold 

cross-validation. The running time of each algorithm is 

recorded. The average value calculated is the execution time 

of the iterations. Then use the new weight buffer replacement 

algorithm for the same experiment, averaging the execution 

time of the records. The number of iterations is 2, 4, 6, 8, 10 

respectively. Experiments were carried out under the 

conditions that the executor memory was 1G, 2G, and 3G. 

The experimental results are compared as shown in Fig.4.1 

Fig.4.1 shows a comparison of execution times 

with LRU and SWCR in different memory 

configurations. Under the same data set, SWCR can 

effectively reduce execution time relative to LRU. 

Under the same memory condition, when the data set is 

larger, the efficiency of SWCR to improve the 

efficiency of PageRank is more obvious. Comparing the 

Fig4.1 (a), (b), and (c), we can see when the memory is 

1G, its performance is relatively poor because it takes 

up memory for the calculation of weights. The larger 

the memory, the better the performance. When the 

memory is large enough, the advantages of the 

minimum weight cache replacement algorithm are no 

longer significant. 

 

 
(a) Comparison of task execution time when memory is 1G 

 
(b) Comparison of task execution time when memory is 2G 

 
(c) Comparison of task execution time when memory is 3G 

Fig.4.1   LRU and SMWCR execution time comparison in 

different memory configurations 

 

(2) Performance evaluation 

The effectiveness of the SWCR in this paper is verified 

by comparing the task execution speedup. Executor memory 

is 2G, calculate and record the task execution speedup 

according to formula (8), as shown in Fig.4.2. Compared with 

the Spark task execution speedup comparison using the LWR 

[5], it can be seen that SWCR optimizes the Spark memory 

cache better than LWR, and SWCR can further improve the 

Spark computing performance. 

 

http://snap.stanford.edu/data/web-Google.html
http://snap.stanford.edu/data/web-Stanford.html
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Fig.4.2   Spark computing performance evaluation 

comparison 

V. CONCLUSION 

In Spark, when there is insufficient storage memory, 

Spark adopts the LRU to select the Block to be replaced. It 

does not consider the RDD partition influencing factors. In 

this paper, we use the weight replacement algorithm and 

improve it. Dependency integrity is added to the minimum 

weight cache replacement algorithm, and the value of each 

partition feature can be dynamically adjusted according to the 

task execution condition, which increases the adaptability for 

cache replacement and improves the task execution efficiency 

under the memory bottleneck. The comprehensive evaluation 

proves that the replacement algorithm this paper proposed 

can effectively improves the performance of Spark 

computing. 
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