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Note on the Null Controllability of Semi Linear
Integro-Differential Systems in Banach Spaces with
Distributed Delays in Control

Oraekie Paul Anaetodike

Abstract— Semi linear Integrodifferential Systems in Banach
spaces with Distributed Delays in Control of the form

0
£($) = —ADx () + j dpH(t, 0)u(t + 6)
“h

+ f(t s, x5(9))

is presented for controllability analysis .Necessary and
Sufficient Conditions for the systems to be null controllable are
established. Uses were made of the Unsymmetric Fubinis’
theorem and some Controllability Standards. The mild solution
of the system was obtained using the variation of constant
formula. From this mild solution, we extracted the set functions
upon which our studies hinged.

Index Terms— Distributed Delays, Null-controllability, Semi
linear, Integrodifferential Systems, Set functions.

I. INTRODUCTION

Highlight According toOraekie (2018), Neutral
functional differential equations are characterized by a delay
in the derivative of the form

%[x(t) — Gx(t — h)] = Ax(t) + Bu(t)

Where [-h, 0 ]is the delay interval , and
x an element of the Euclidean space E" of

n — dimensions. A. G are nxnconstant matices,
B is an nxm constant matrix and h > 0

real number. Equations of this form have applications in
the study of electrical networks containing lossless
transmission lines (Bray ton (1976) ,vibrational problems
(Ekgoltz(1964),

Electrodynamics (Driver (1963).

One of the celebrated triumphs of La Salle was his solution
of the null controllability problem of linear ordinary
differential control system of the form

x(t) = A(®)x(t) + B(H)u(t)(1.1)

Where A is nxn constant matrix and B is an nxm constant
matrix, when the controls are square integrable functions and
lie in the unit cube:
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Cm={y €eR™: |y|<1;j=12,..,n}(12)
Where u; denotes the jth component of U.
He showed in his work(La Salle (1959)
That if system (1.1) is proper (and this holds if and only if
rank[B, AB, A*B, ..., A" "1B]
=n
And if the system
x(t) = A(t)x(t)(1.4)

is stable( i.e. all the eigenvalues of A have no positive
real part) ,then system(1.1) is null controllable with
constraints.

The rank condition in system (1.3) is equivalent to the
controllability of system (1.1) when the controls are “’big’’ in
the sense that they are only assumed to be square integrable.
This is equivalent to null controllability with square
integrable controls. We call such controls unrestrained in
contrast to the restrained controls which lie in a closed and
bounded set(Oraekie (2018)). But for delay systems, null
controllability is not equivalent to controllability. For instant,
all ntth order scalar differential difference equations of
retarded type are null controllable (H.T.Banks, M.Q.Jacobs
and C.E.Langenhop (1975)), where as they are never
controllable. For the delay system of the form

x(t) =L(t,x,) +B)u(t) ,t=0
%y = € W,V ([~h,0]) = W,V

Chukwu (1984), proved that if the system (1.5) is

controllable with unrestrained controls, and if
x(t) =L(t,x),t=0 (1.6)

is uniformly asymptotically stable, then system(1.5) is null
controllable with constrained controls. The problem was
posed on whether the weaker condition of null controllability
with unrestrained controls and the uniformly asymptotic
stability assumption was sufficient for restrained null
controllability. The issue was settled in Chukwu (19 97)
That is, it was shown that if the system (1.5) (i.e.,x(¢) =
Lt xt+PBtut is null controllable with square integrable
controls and if the system(1.6)uniformly asymptotically
stable, then system(1.5 is null controllable with square
integrable controls which lie in a closed unit ball with zero in
its interior.

Controllability of linear and nonlinear systems represented
by ordinary differential equations in finite dimensional
spaces has been extensively studied. Several authors have
extended the concept to infinite dimensional systems
represented by the evolution equations with bounded
operators in Banach spaces(Oraekie(2016)
,Naito(1992)).Recently, Oraekie(2017) established

(1.3)

(1.5)
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necessary and sufficient conditions for null controllability of  concept of null controllability with constrained controls to
nonlinear infinite dimensional space of neutral differential  the systems of Semi linear Integrodifferential Systems in
systems with distributed delays in the control. Banach Spaces with Distributed Delays in the Control.

The purpose of thiswork,therefore, is to extend the

Il. PRELIMINARIES/NOTATIONS

2.1. DESCRIPTION OF SYSTEM
Our specific objective is to study the controllability the Semi linear Integrodifferential Systems in Banach Spaces with
Distributed Delays in the Control of the form.

0 t
#(8) = —A©)x($) + f dyH(t, O)u(t + 6) + f £t 5,%(8) it €] = [to,t1](2.1)
Zn —o
% () = p(D); t € (—o0,0]

Through its semi linear base control system

0
#(8) = —ADx(¢) + f doH(t, )u(t + 6) (2.2)
Zh

and its free system

5:(@) = —AWDx () + f £(t5,2,($)) (2.3)

Here,{A(t): t = 0}is a family of bounded linear operators mapping a Banach space
X to X.The state x(t) takes values in the Banach space X and the control function u is given
L,(J ,U),a Banach space of admissible control functions with U as a Banach space.
H(t, 0) is an nxm matrix continuous at and of bounded variationin 6 on [—h,0];h > 0
foreacht €] = [ty t;],t; >0=0.
Let X, denote the interpolation space defined in the a power of A(o0) that is,
Xo =[x : x € D(4°(0))] with lIxll, = 14°(O)]|

The space C, is the space of bounded ,uniformly continuous function ¢ from (—x,0]to X,
Endowed with the supremum norm : ||¢llc, = sup{l¢(O)ll : 6 € (—,0]}.
Furthermore,let ¢ € C, for some a € (0,1),and f is a continuous nonlinear operator
of JxJxX, into X.For the existence of a solution of system (2.1),we use the following
assumptions as contained in Dauer and Balasubramaniam(1997):
(1).The domain D(A) of A(t),t € ] = [ty, t1],t; > 0,is dense in the Banach space X
and independent of t.
(ii) .For each t € [0,), the resolvent R(A ,A(t)) exists for all A such that ReA = 0,
and there exists C > 0 such that || R(/l ,A(t))” < Ml%
(iii) . For any t,s, T € ] = [ty, t1],there exists a § > 0 such that § € (0,1) and K >0 >

|(A(®) = A@)A ()| < Kt —<I°

And for eacht € [ty, t;] and some 1 € p(A(t)), the resolvent R(/l , A(t))set ofA(t) is
compact operator.The fact that 0 € p(A(t)) and — A(r) generates an analytic
semigroup implies that fractional powers of A(r) can be defined for 0 < a < 1. We put

1
—a — a—1,-sA(r)
A% (1) _F(a)fs e ds,
0

where I'(.) denotes the Eulerian gamma function.The operator A~*(r) can be shown to be a
bounded linear operator with well defined inverse(Rankin(1982)). Friedman(1969) established
that if conditions (i) — (iii) above are satisfied, then there exists an operator valued
function X(¢, ) which is defined on the triagle 0 < t < t < 0. X(t, 7) is strongly continuous
jointly in t and t, maps X into D(A) ift > 7.The family {X(t,t) : 0 <1 <t < o} satisfies
the identity

X(t, 1) = X(t,5)X(s,7): 0 <1<t < o0

é
The derivative aX(t, T) existe in the strong operator topology and belongs to X whenever

0<t<t (Pazy(1982)).
Finally, X(t, 7) satisfies the following initial value problem

¥
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%X(t, T) = A(t)X(t, 1), fort > 1

X(z,7) =1, whenl is the identity operator.
Furthermore (see Fitzgibbon (1990)),if0 <v<1; 0<B <3 <1+ u,then for any
0<1t<t+At<t;ands € ], there exists a K(B,v, ) such that

|4° () [X (¢ + At,©) — X(£, DA ()]|| < K(B,v,8)(A)’ V|t — z|f~9(2.4)

(iv) .There exists a fy > aand w > 0 such that for 0 < < B, there exists a Kz > 0
satisfying

|42 (0)X (L, )| < K (t — s)Pe @ =9)(2.5)
(v).The function f: JxJxX, = X is continuous , f(t,s,0) = 0 for s < t,and there exists
an L > 0 and v > 0 such that

If(t,s,%) = ft,s, 9l < eV ILx = yll.(2.6)

(vi).The bounded linear operator A~*(t) is compact for all @ € (0,1].
Suppose that (i) — (iii) and (v) are satisfied .
If p€C,and p(0) €D (Aﬁ (0)) for some B > a and (iv)is satisfied for some By > B,

then there exists a unique function x,(¢) : | > X such that
t N

x.(¢) = X(t,0)p(0) + f X(t,s) j f(s,7,x.(¢)) drds
. 0 0 0
+fX(t,s) fdgH(t,e)u(He) ds (2.7)
—h

0
x (@) = p(); t € (=, 0].

Moreover, x,(¢) is continuously dif ferentiabe for t > 0 and satisfies system (2.1)

2.3. EXPLICT VARIATION OF CONSTANT FORMULA

A careful observation of the system (2.7)shows that the values of the control u(t) for

t € [—h, t]enter the definition of the complete state (z(ty) = {X, u,}) thereby creating

the need for an explicit variation of constant formula. The control in the last term of the
right hand side of the formula (2.7), therefore, has to be transformed by applying the method
of Klamka as contained in Klamka (1978). Firstly, we interchange the order of integration

using unsymmetric Fubinis theorem to have
t

x:(¢) = X(t,0)¢(0) +fX(t,s) J-f(s,r,xr((j))) dtds
0

0 t+0
+ deg f X(t,s—0)H(s—0,0)u(s+6 —06)ds (2.8)

“h 046
Simplifying system(2. 8) we have

x.(¢) = X(t,0)$(0) + fX(t s) ff(s 7,%.(¢)) drds

0 0
+ f dH, fX(t,s —0)H(s — 0, 0)uy(s) ds
S I
+ f dH, f X(t,s—0)H(s—0,0)u(s) ds (2.9)

Using again the Unsymmetric Fubinis’ theorem on the change order of integration and
H(S,0),fors <t

incorporating H* as defined below, H*(s,0) = { 0 fors>t (2.10)
System (2.9) be comes
t N
x(¢p) = X(t,0)p(0) + f X(t,s) ff(s, T, x,(qb)) dtds
0 0 —o0
+ fdyg fX(t,s —0)H(s — 0, 0)ug(s) ds + f fx (s — 0)d0 H* (s — 0, 0)u(s) ds (2.11)

~h ] 0 -h
Integration is still in the Lebesgue Stieltjes sense in the variable 8 in H.
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For brevity, let

t N

n() = X(t 0)$(0) + f X(ts) f £(s,7,%.(¢)) drds (2.12)
0 —0

0 0
u(t) = f dH, fX(t,s —60)H(s—0,0)uy(s) ds (2.13)
Zh ]

t 0
Z2(t,s) = f fx (t,s — 0)d6 H' (s — 6,6)(2.14)
0 -h
0
Z7(t,s) = f X(t,s — 0) dOH' (s — 6,6)| (2.15)
Zh
Substituting systems (2.12), (2.13) and (2.14) in system(2.11), we have explicit variation of
constant formula for the system(2.1) as

T

x.(p) =n(t) + u(t) + z(t,s)u(s) ds (2.16)

2.4 . BASIC SET FUNCTIONS AND PROPERTIES
Definition 2.4.1(Reachable set)

The reachable set of system(2.1) is given as

t 0
R(t,ty) = j JX (t,s —0)dOH" (s — 0,0)u(s) ds : u € C™  L,(J, V)and |y | < 1,V .
0 —h

Definition 2.4.2. (Attainable set)
The Attainable setof system(2.1) is given as
At o) = {x.(¢):u € C™ < L,(J, Vand |y | < 1,V j}

Definition 2.4.3.(Target set)
The Target setof system(2.1) is given as
C B x(P):t€];t=T>ty=0 forsome fixed Tandu € C™ c L,(J,U) 3
(t t)) = |uj|S1,Vj

Definition 2.4.4.(Controllability Grammian).
TheControllability Grammianof system(2.1) is given as

t[ 0 0 T
Wt ty) = f f X(ts — 0) dOH" (s — 6,0) f X(ts — 6) doH" (s — 6, 6)
0 |=h =h

where T denotes matrix transpose. Put
u(t) = —Z(t, )W (t, to) [x.(d)] (2.17)

Definition 2.4.5. (Properness).
The system(2.1) is said to be proper on an interval [ty, t;] if
0
cT fX(t,s— 0)dOH* (s —6,0)[=0a.e =>C=0
=h
That is,system(2.1)is proper in R"™ on[t,, t{] if span R(¢,t,) = R".

Definition 2.4.6.(Complete Controllability)

The system(2.1) is said to be Completely Controllableon an interval | — [t,, t1] if
for every continuous initial function ¢ and every state x; € R", there exists an
admissible control energy function u € U such that a solution of the system(2.1)
satisfies

x () = Xty (@).
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Definition 2.4.6.(Null Controllability)

The system(2.1) is said to be NullControllableon an interval | = [ty, t1] if for
every continuous initial function ¢ € C, ,there exists an admissible control
energy function u € U such that a solution x,(¢) of the system(2.1) satisfies

xt1(¢) = 0
Il. MAIN RESULT
Consider the system(2.1) given below

0 t

% () = —A)x. (¢) + fdgH(t, u(t+0) + ff(t, s, xs(¢>)) ;tEJ (system(Z.l))
x.(#) = (O3t € (=0,0] B

Assume for system(2.1) that :

(i) .that the constraint set U C L, is an arbitrary compact subset of R™.

(ii) .The free system(2.3) given as

%) = —A(D)x($) + f £(t,5,%,($)) (system(2.3))

is uniformly asymptotically stable sothat the solution of the system(2.3) satisfies
exponential estimate.i.e.
llx. (¢, to) Il < Me1“~t |||, for a,M > 0; ty = 0
(iii) . The Semilinear controlsystem (2.2) is proper in R™.
0

i.e. X, () =—-A)x.(¢p) + fdgH(t,G)u(t +6) (system(Z.Z))
Zh
Then system(2.1) is null controllable.

Proof.

Recall that the controllability grammian denoted by W (t, ty)has an inverse and
the invertibility of the grammian of any dynamical control system garantees
the controllability of the system( Oraekie (2013)).Thus, by (iii) W(t, t,) exists
for each t > 0.
Suppose that the pair of functions x,u form a solution pair to the set of
integral equations:

t 0

w(®) = —Z7(t, $)W-L(t to) | x, () — f f X (ts —8)do H' (s — 8, 0)u(s) ds
0 —h

t 0 T
> u(t) = —ffX(t,s—B)d@H*(s—H,@)
o tT 0 0 N
x X(t,s—0)dOH* (s —0,0) X(t,s—0)dOH* (s —6,0)
I J
t 0
X xt(¢)—j jX(t,s—G)dGH*(s—G, u(s) ds

0 -h
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= u(t) = (—

t 0 T
jJX(t,s—G)dGH*(s—H,H)] )x

(J

0 0 t 0
+ jngjX(t,s—@)H(s—G,G)uO(s) ds + fX(t,s—G)dQH*(s—B,B)u(s) ds
Zh ] 0 -<h

0

/

=h

0
JX(t,s —0)doH*(s — 6,6)
=h

T
X(t,s —0)dOH*(s — 9,9)] ) x

t N

[X(¢, 0)¢(0) + f X(t,s) f £(s,7,%.(¢)) drds

0

t 0
—.f fX(t,s— 0)dOH* (s — 6,0)u(s) ds |
0 -h

t 0 T
f fX(t,s —0)dO H' (s — 6, 9)] )

= u(t) = (—
0 -h
x
f

t s 0
[X(t, 0)¢(0) + fX(t,s) ff(s, T, X, (d))) dtds + f dHy fX(t,s —60)H(s—6,0)uy(s) ds‘ (2.18)
0 “h

2

0

J

=h

0
JX(t,s —0)dOH" (s — 6,0)
=h

T
X(t,s —0)dOH" (s — 0, 9)] ) x

0

—00

For some suitable chosent; >t >ty = 0,we have
t N

x(¢p) = X(t,0)¢p(0) + fX(t,s) ff(s, ‘L',XT((],'))) dtds
0 —

0 0 t 0
+ deg fX(t,s —60)H(s—6,0)uy(s)ds + fX (t,s —0)dO H* (s — 0,0)u(s) ds (2.19)
0 =h

—h 0
x:(p) = p(t) ;t € [to — A, to]
t1 t1

= x., (@) = X(t,0)9(0) + f X(t,s) J f(s, ‘L',XT((P)) dtds
0 o0

0 0
+ J-ngfX(t,s—H)H(s—@,e)uo(s) ds
Zh 9

t1 0 ‘o7 T
+f fx(t,s—e)dHH*(S—9’9)<‘ !_{X(t,s—@d@]—]*(s—@ﬁ)‘ >

0

J

=h

0 -h

{

t1 tq 0 0
X(t,0)¢(0) +f X(t,s) ff(s,r,xT((j))) dtds + deg fX(t,s—Q)H(s—B,H)uo(s) ds] ds
—o0 h 6

0 —
t1 t1

> x,($) = X(t,0)$(0) + f X(ts) f £(s,7,%.(¢)) drds
0 —0

0
fX(t,s —0)dOH* (s — 6,6)
=h

T
X(t,s —0)dOH*(s — 9,9)\ ) x

N.
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0

0
+ l ngng(t,s—H)H(s—B,B)uo(s) ds

- [fo“ S X (6,5 — 0)d0 H* (s — 6, 9)]T (fo” [’ X (65— 0)dOH"(s -6, 9))

s [fth(t, s—0)doH"(s — 6, 9)] [f=0hX(t,s —0)doH"(s — 6, e)]T

X(t,0)¢(0)

t1 t1 0 0
+ | X(t,s) f(s, T, X, (¢)) dtds+ | dHy | X(t,s —0)H(s — 0,8)uy(s) ds
Jren | Jonl

t1 t1

= x¢, () =X(t,0)q§(0)+fX(t,s) ff(s,r,x,(d))) dtds
0 “®

0 0
+ de(, fX(t,s —0)H(s — 0,0)uy(s) ds
—h /]

t1 t1 0

0
-1 X(t,O)¢(0)+fX(t,s) ff(s,r,xf(¢))d‘rds+ degfX(t,s—B)H(s—G,G)uo(s) ds
0 — —h 6

= x, (@) =X(t,0)q,’)(0)+fX(t,s) ff(s,r,x,(d))) dtds
0 —0
0

0
+ f dH, fX(t,s —B0)H(s—6,0)uy(s) ds — X(t,0)¢(0)
—h 0
t1 t1 0 0
—f X(t,s) J f(s,r,xr(qﬁ)) dtds — deg JX(t,s —0)H(s—6,0)uy(s)ds = 0.
0 —0 —h 6
It remains to show that u is an admissible control energy function.That is we need to show
that u is a function from the interval | = [ty, t;] to U (u: [ty,t;] = U )is in the
arbitrary compact constraint subset of R™.i.e.|u| < r for somer > 0 and r € (0,1).

By (ii)
|ZT (t1, )W ~L(ty, to)| < by, for some by > 0.
and
|x(t, o)Xy, (0)| < ematrto), for some by >0

Hence,

t1

W@ < bobrexp(—aty )] [ by exp(=aCer ))exp(=ps)

to

.Thus,

[u(O)] < bo[byexp(~alty , t))]pbrexp(~at;)(2.19)
Sincep—a=0ands=>ty; =0
Taking t; sufficiently large,we have |u(t)| <7 ,t € [ty t1],
showing that u is an admissible control.
Next,we prove the existence of a solution pair of integral equations (2.18) and(2.19).
Let E be the Banach space of of all functions (x, v): [ty — h, t;]x[ty — h, t;] = R"XR™,
wherex € E([to — h,t;],R"),u € L,([to — h,t;],R™) with the norm defined by

1Ce, )11 = IIxll, + [Ixl,
1
t1 2 t1
where,  [lxll, = f ()2 ds ;||u||2=l f lu(s)|? ds
to—h to—h

Define the operator T: E = E by
T(x,u) = (y,v), where

¥
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t1 N

0
0 0

X(t,s) ff(s, T, xT(d))) dtds

+ degfX(t,s—H)H(s—@,@)uo(s) ds| (2.20)

—h 2

forte€[ty,t1] ,and v(t) = w(t),t € [ty — A, t].

t N

Y (@) = X (8, 0$(0) + f X(t,s) f £ (5,7, x:($)) duds
0 —0

0 0 t 0
+ _{ dH, efxa,s —0)H(s — 6, 0)ug(s) ds + Of _Jh-X(t,s — 0)dO H' (s — 6, 0)u(s) ds

fOT't € [tOJtl] !and yt(¢) = ¢(t);t € [tO _/LtO]'

(2.21)

We have already shown above that |lu(t)| <r,t €] =[ty,t;]andv: [t,—h,t;] = U,
we |[v(t)| <.

1
Hence, ||lv(t)|l, < r(ty + h — ty)Z = cy.
t

Again, |y, ()] < byexp[—a(t — to)] + bs f v(s)| ds + phyexp(—aty)

to

b; = supl|Z(t,s)|.Sincea > 0,t =ty = 0,we conclude that
|y¢(@)| < by + bza(t —ty) + pb, = ¢, ,t €J,and
lye(P)| < suplp(t)| =d,t€ [ty —A,t,]
Hence,if n = max(c,,d),then

Iyl <ty +h—t)2 = ¢ <0t €]

Let k = max(cy,c;) .Then,if welet B() = {(x,u) €E: ||x|l; < L;|lyll, <1}

We have shown thus that T: B(l) —» B(l).
Since B(l) is closed, bounded and convex, by Riesz theorem( See L.V. Kantorovich and G.P.

Akilov(1982), Functional Analysis, Pergamon Press, Oxford), Onwuatu(1993), KYBERNRTIKA,

VOL29,N04, PP325 — 336,0raekie(2018),) it is relatively compact under the

transformation. Hence, system(2.1) is null controllable.

IV. CONCLUTION

In this work, necessary and sufficient conditions for the

Semi linear Integrodifferential Systems in Banach spaces with
Distributed Delays in Control to Null Controllable have been
derived. These conditions are given with respect to Stability
of Free Semi linear Base System and the Controllability of
Semi linear Control Base System with the Assumption that
the perturbation f satisfies some Smoothness and Growth
Conditions. Computable Criteria for all these are reported.
These results extended known results in the literature.

(1]

[2]
(3]
(4]

REFERENCES

Oraekie,P.A.(2018);Euclidean Null Controllability of Nonlinear
Infinite Neutral Systems with Multiple Delays in Control, Journal of
the Nigerian Association of  Mathematical Physics, Vol. 44 (Jan

Issue),pp1-8.

Brayton, R. (1976); Nonlinear Oscillations in a Distributed
Network.Quart.Appl.Math. Pp 239-301.

Ekgoltz, L.E.(1964); Qualitative Methods in Mathematical

Analysis, Trans. Math. Mono, 12, American Math.Soc.

Driver, R.D.(1963); A Functional Differential System of Neutral type
in a two-body Problem of classical Electrodynamics in Nonlinear
Differential Equations and  Nonlinear Mechanics, Academic Press,
New York.

¥
N{‘.xlgcn

Re: [

68

[5]

(6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

La Salle,J.P.(1959);The time Optimal Control Problem in Theory of
Nonlinear Oscillations, Princeton Univ. Press, Princeton .N.J. Vol..5.
,pp.1-24 .

Banks, H.T., M.Q.Jacobs and C.E.Langenhop  (1975);
Characterization of Controlled ~ State in W, of Linear Hereditary
Systems, SIAM J.Control Optimization 13, pp 611-649.

Chukwu, E.N. (1997); Function Space Null Controllability of Delay
Systems with  Limited Power, J. of Mathematical Analysis and
Applications, 124, pp 293-304.

Oraekie, P.A. (2016); Relative Controllability of Nonlinear Infinite
Space of Neutral Differential Systems with Distributive Delays in the
Control, Journal of the Nigerian Association of Mathematical
Physics, Vol 36, No.1, Pp 9-14.

K.Naito (1992); On Controllability for a Nonlinear Volterra Equation,
Nonlinear Analysis, Theory, Methods and Applications, 18, pp
99-108.

ORAEKIE, P.A., (2017): Null Controllability of Nonlinear Infinite
Space of Neutral Differential Systems with Distributed Delays in the
Control, Journal of the Nigerian Association of MathematicalPhysics
Vol.41, pp11-20.

Dauer,J.P. and Balasubramaniam(1997) ; Null Controllability of Semi
linear Integrodifferential Systems in Banach Spaces, Appl.Math.Lett.
Vol.10, pp.117- 123.

Rankin,S.M (1982),Existence and Asymptotic Behavior of a
Functional Differential Equations in Banach Spaces, Journal of
Mathematical Analysis and Applications, 88, pp531-542.
Friedman,A.(1969); Partial Differential Equations ,Holt,Rinchart and
Winston, New York.

Pazy,A. (1983) ; Semi groups of Linear Operators and Applications to
Partial Differential Equations, Springer-Verlay, New York.

WwWw.ijntr.org



International Journal of New Technology and Research (IJINTR)
ISSN: 2454-4116, Volume-5, Issue-3, March 2019 Pages 61-69

[15] Fitzgibbon,W.E.(1990) ;Asymptotic Behaviour of Solutions to a Class
of Volterra  Integrodifferential Equations, Journal ofMathematical
Analysis and Applications, 146, pp241-253.

[16] Klamka,J. (1978) ;Relative Controllability of Nonlinear Systems with
Distributed Delays in Control, International Journal of Control, 28,
pp307-312.

[17] ORAEKIE, P.A., (2013):The Relative Controllability of
NeutralVolterra Integrodifferential Systems with Zero in the Interior
ofthe Reachable Set; African Journal of Sciences, Vol 14 Nol, Page
3271-3282.

[18] Kantorovich,L.V.andAkilov,G.P.(1982)
Analysis.Pergaman Press Oxford.

[19] Onwuatu,J.U.(1993) ; Null Controllability of Nonlinear Infinite
Neutral System, KYBERNETIKA,Volume 29,Number 4,pp 325-336.

; Functional

¥
N(-:xlpgcn

Re:

69 www.ijntr.org



