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Existence and Unigueness of Optimal Cotrol of
Impulsive Quasi-Linear Fractional Mixed
\olterra—Fredholm- Type Integro - Differential
Euations in Banach Spaces with Multiple Delays in
the Control

Paul Anaetodike Oraekie

Abstract— The Impulsive Quasi - Linear Fractional Mixed
Volterra - Fredholm — Type Integro — Differential Equations in
Banach Spaces with Multiple Delays in the Control is presented
for controllability analysis. Necessary and Sufficient Conditions
for the Existence of an Optimal Control for the System are
established. The mild solution of the system is established using
the variation of constant formula. The set functions upon which
our study hinged were extracted. Necessary and sufficient
conditions for the establishment of the uniqueness of the system
were derived. Use was made of some controllability standards to
establish results. The establishment of the uniqueness of the
optimal control provided a new approach for the proof of the
existence of an optimal control of any dynamical control system.
The main result is built on the maximization of a set function; a
technique drawn from the calculus of variation.

Index Terms— Multiple Delays,Optimal Control,Relative
Controllability, Impulsive Quasi — Linear, Fractional. Set
Functions, Uniqueness.

I. INTRODUCTION

Highlight The pioneering work of Vito Volterra on the
Integration of the differential equations of dynamics and
partial differential dynamical systems published in 1884 gave
vent to the conception of integral equation of volterra type
Robertson [1].1t is equally observed inBalachandran
[2]that the mixed initial boundary hyperbolic partial
differential equation which arises in the study of lossless
transmission lines can be replaced by an associated neutral
differential equation. This equivalence has been the basis of a
number of investigations of the stability properties of
distributed networkBalachandran [3]which study has been
extended to compartmental models governed by neutral
Volterra integro-differential equations. Compartmental
models have been found in Burton [4] to have numerous
applications in Applied Mathematics; these models are used
to vividly describe the evolutions of systems, in theoretical
epidemiology, physiology, population dynamics chemical
reaction kinetics and the analysis of ecosystems Gyori [5] .
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Most of these models can be divided into separate
compartments. A paradigm for such systems can be seen as
one in which compartments are connected by pipes through
which materials pass in definite time. An example of
compartmental model is given in Gyori [5]as the radio
cardiogram where the two compartments correspond to the
left and right ventricles of the heart and the pipe between
these compartments represent the pulmonary and systemic
circulations. Other applications of Volterra
Integro-differential equation arise in tracer kinetics in the
modeling of uptake of potassium by red blood cells as well as
in modeling the kinetic of lead in a body([4], [5] ). The wide
application of Volterra integro-differential equations in
Bio-Mathematics and economic models underscores the
immense interest the study has generated. Literature on the
relative controllability of Volterra equations is still scanty.
However, sufficient conditions for the relative controllability
of Non-linear neutral Volterra Integro-differential equations
have been provided in Balachandran [2]. However, the
systems with delays in the state, investigation into their
relative controllability are still attracting attention and
interest. The controllability and approximate controllability
of delay Volterra systems were investigated by using fixed
point theorem Oraekie [6] . Thecontrollability and Local null
controllability of Nonlinear Integrodifferential Systems and
Functional Differential systems in Banach spaces were
studied and it was shown that the controllability problem in
Banach spaces can be converted into one of a fixed point
problem for a single-valued mapping [7]..Balachandran and
co-workers studied the controllability of Sobolev-ype Partial
Functional Differential Systems in Banach Spaces [8]. While
Oraekie [6] studied the Retarded Functional Differential
Systems of Sobolev-Type in Banach Spaces and established
that once a system of the Sobolev — type is controllable with a
single delay in the control of the system, then it is also
controllable with either multiple delays or distributed delays
or both multiple and distributed delays in the control
.However, necessary and sufficient conditions for the target
set of Nonlinear Infinite spaces of Functional Differential
systems with Distributed Delays in the control to be on the
boundary of the Attainable set of the system have been
provided in Oraekie [9] .It was made clear that whenever an
optimal control is in use to steer the system of interest from
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the initial point to the target (desired point) , then the target
set must be on the boundary of the attainable set of the system
Oraekie [10] .Optimality conditions for the relative
controllability of neutral Volterra Integro-differential
equation has been provided by Oraekie [11] ; though there
are studies in the optimal controllability of ordinary and
functional differential systems. From ( [12], [13], [14] ), we
gain clarity of meaning and understanding of the conceptual
frame work of optimal controllability.

Many processes studied Applied Sciences are represented
by differential Equations. However, the situation is quite
different in many physical phenomena that have sudden
change in their states such as mechanical systems with
impact, biological systems such as heart beats, blood flow,
population dynamics, theoretical physics, radio physics,
pharmacokinetics, mathematical economy, chemical
technology, biotechnology and medicine etc. Adequate
mathematical models of such processes are systems of
differential equation with impulses.Thetheory of impulsive
differential and integro-differential equations is a new and
important branch of differential equations ( [15], [16] ).

Fractional differential equationshave recently proved to be

valuable tools in the modeling of many phenomena in various
fields of sciences and engineering ( Banila[17], [18] ). There
has been significant development in fractional differential
equations in recent years( [19], [20], and [21] ) Recently,
Balachandran [22] studied the existence results for
Impulsive fractional differential and Integro-differential
equations in Banach spaces using standard fixed point
theorems.

Controllability is the most important qualitative behavior
of any dynamical system. It is well known that the issue of
controllability plays an important role in control theory and
engineering( [23], [24] and [25] ) because they have close
connections to structural decomposition, quadratic optimal
control, observer design etc. The literature related to
controllability of Impulsive fractional Integro-differential
equations and controllability of Impulsive Quasi-linear
Integro-differential equations is limited, to our knowledge, to
the recent works ( [17], [26] ). The study of controllability of
Impulsive Quasi-linear fractional mixed
Volterra-Fredholm-type integro-differential equations is
presented in Kavitha [27].

In this paper, therefore,we shall considerImpulsive Quasi
—linear fractional mixed
Volterra — Fredholm — type Integro — dif ferential equations in Banach spaces with

Multiple delays in the control of the form:

m t b
Dix(t) = A(t,x)x(t) + Z Bju(t - hj) + flt,x(®) ,fg(t,s ,x(8)) ds,fk(t,s,x(s))ds (1.1)
j=0 0 0

teJ=[0,blt#t,,k=123,..,m
Ax't:tk= Ik(x(tk_l)) Jk=123,...,m
x(0) = x,

(1.2)

(1.3)

with the main objective, of investigating the existence of an optimal control of the systems (1.1)

1.1. Description of System

Consider system (1.1) — (1.3) — the impulsive quasi-linear fractional mixed Volterra-Fredholm-type integro-differential
equations in Banach spaces with multiple delays in the control given above. That is,

b

DIx(t) = A(t,x)x(t) + ZBju(t — h]) + flt,x(®) ,fg(t,s,x(s)) ds,]k(t,s,x(s))ds (1.1)
j=0 0

te]=[0,b),t+t,,k=123,...m
Dpli=y, = L(x&™D), k=123,..,m
x(0) = xq

0

(1.2)

(1.3)

Here, the state variable x(.)takes values in the Banach space X and u(.) is a control
function is an admissible square integrable m — dimensional vector function, with
U as a Banach space.i.e.u € L,(J ,U) .Here,0 < q < 1,and A(t, x)is a bounded

linear operator on a Banach space X . Further more, f : JxXxXxX - X,g: QxX - X,

k:QxX—>X, L X - X, Ay, = x((tF) —x(t7),

forall k=12,... ,m;

0<ty<t1 <t <...<ty <tpy =t; Q={(t,s),0<s<t;}.
Thus the control space will be the Lebesgue space of square integrable functions.
The constraint control set U is the closed and bounded subset of L.
Let h > 0, be given.For a function u: [—h,t;] > X and t € [ty,t;],
we use the ssymbol u, to denote the function defined on the delay interval [ —h,0 ]

by u,(s)=u(t+s),forse [—h,0].
Definition 2.1. (complete state)
The complete state for system(1.1)is given by the set

z(t) = {x,uy}

Definition 2.2.

The system(1.1) is said to be relatively controllable on the interval [ty , t,]if for
every initial complete state z(0) and x | € X, there exists a control function u(t)
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defined on [ty , t;] such that the solution x(.) of the system (1.1)satisfies x(t;) = x;
2.3. Basic Definitions of Fractional Calculus
Let X be a Banach space and Rt = [0, ). Suppose f € L;(RY). Let C(J,X) be the
Banach space of continuous functions x(t) with x(t) € X fort € ] = [ty ,t;] and
lxllces x) = rrtl(SXIIX(t)II :
Let B(X)denote the Banach space of bounded linear operators from X into X
with the norm lAllxy = sup{llAQ)I : llyll =1}
Also consider the Banach space PC(J,X) = {x:]J > X :x € C{[ty , tp41].X)},
k =0,1,2,.. ,mand there exists x(t;,”) and x((t;, ) with x((t;, ") = x(t;)
with the norm [lx)lpc = Supllx(O]l .
tej

Definition 2.3.1
The Riemann — Liouville fractional integral operator of order a > 0,0f function
f € Ly(R") is defined as

a 1 ¢ )
0[ FO =5y | €= 9 r@ds
where T'(.) is the Euler Gamma function.

Definition 2.3.2
The Riemann — Liouville fractional derivative of ordera>0n—1<a<n,n€N

n—a-1
m dt f (t—S) f(S)dS
Where the function f(t)has absolutely continuous derivatives up to order (n — 1).
Definition 2.3.3
The Caputo fractional derivative of order a > 0 n—1<a<n,n€Nisdefined as:

is defined as : Dy+*f(t) =

Dy “E(E) = f (t = $)"=1 £ (5)ds,
Where the function f(t) has absolutely continuous derivatives up to order (n — 1).
Ifn=1, then n—1<a<n=0<a<1,impliesthat
1 t
Dy+“f(t) = f (t =s)' 21 fl(s)ds = f (t —s)™%fl(s)ds
(1 —-a)
1 tfl(s)

f1(s)ds = fa—aw ), oo

B F(1—oc)f0 (t —s)
Where , fl(s) = Df(s) = f( )

and f is an abstract function with values in X.

2.4.Variation of Constant Formula
From the Works of[21]and [28] ,we have theMild solutionof systems (1.1) — (1.3) as the following integral equation :

tr 1 t
x(t) = (ty — )97 TA(s, x)x(s)ds (t—s)q TA(s, x)x(s)ds +
F( )0<t <t J-k—l ‘ F( )
@, o o e
b
+ ’ (te =)7L f| s,x(s), g(s,r,x(‘r))dr, k(s,‘r,x(r))d‘r ds
0<Zk:<t'[k1 ‘ f !
b
F(l) tk(t—s)q 128 Su(s - h)+F( )f (t=5)1"1f|s,x(s), fg(s 7,x(1))dr, Ofk(s ,7,x(1))dt | ds
+ Z I (x () 2.3.1)
0<tp<t

One may assume without loss of generality that ,
hm > hm—l > hm—Z >...> hl > hO =0

The initial control uy(t) is given on [to = P ’to] Lt =0

The solution of the system(1.1) for t >ty + h,, is given by
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tk

x(t ,xp,u) = F( ) (ty — )T T A(s, x)x(s)ds
0<tg<t " tk-1
F( )J- (t —s)TTA(s , x)x(s)ds
D o | o Y mentene

tk

+ Z f 1( e —S)1 1f(s x(s), fg(s 7,x(1))dr, fk(s T x(r))dr) ds

0<tg<t " tk— J

+T‘D}.Z()Bj (u(s — k) ftk(t —5)7-1ds

0

s b
+%q)_£k(t—s)q—1f s,x(s),ofg(s,r,x(r))dr,fk(s,r,x(f))d7> ds

+ Z I (x (&) (2.3.2)
0<tj <t

1
I'(q)

t

(t —5)11A(s , x)x(s)ds

x(t ;xo;u) =x0+

Z ftk (ty — )T T A(s, x)x(s)ds

0<t<t " tk—1
F()
ZF(Q)Z (t" s+hy)" ZB(S"'h)u(t h +h)ds, fork=1

0<ti<t

b
+ Z fkl( — )~ 1f(s x(s), fg(s 7,x(1))dr, J-k(s T x(r))dr) ds

0<tp<t “thk-

Zr( )Jt t=s+1)"" B (s +hult —hy + by)ds

F(l) tk(t—s)q 1f(s x(s), j (s,7,x(x))dr, fk(s T x(r))dr)ds

0

+ Z I (x (t)) (2.3.3)

0<tj<t

=,x(t ,xp,u) =x +L Z ftk (tx — )17 A(s, x)x(s)ds

e )f (£ = )T ACs, )x(s)ds

to

ZFL Z J (to—s+h) " B(s+h)uo(s — b +Iy)ds , for k=1

o<ti<t ‘0-h;

D 2 o ) s s s
=0

0<ti<t “tl-hj+1
b

F(CI)(KZI:‘QI (te =) f [ s,x(s), fg(s 7,x(1))dr, OJ-k(s ,7,x(1))dt | ds
ZF( )ft (e=s+1)" (s +hyu(e—ky +hy)ds
b

F( )J- (t—s)i~ 1f<s x(s), fg(s 7,x(1))dr, J-k(s T x(r))dr)ds

0
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+ Z I (x () (2.3.4)

0<tj<t

=,x(t ,xp,u) = x9+——<

J. (tk —5)7 1 A(s, x)x(s)ds

1
I'q )0<t <t " tk—
t

1
+ t — )97 TA(s, x)x(s)ds
@), ( ) (s, 2)x(s)
m 1 to o1
+ Z— (to—s+h) B(s+h)u(s—h +h)ds,fork=1

1=0 0<ti<t " t0—h;

L 1 t1—hj q-1
Y (tr=s+h)" B (s +h)u(s — by + by)ds

1=0 0<ti<t " tl-hj+1

p b
LTS Z J (tx —s)q—1f<s,x(s).fg(s,r,x(r))dr,jk(s,r,x(r))d1> ds
0 0
’ Z%q)fhj (t=s+h)"" B (s+h)u(s — b +h)ds
b

f t—s)"1f| s,x(s), fg(s T, x(r))d‘r fk(s T x(r))d‘r ds

0

I'(q)

+ Z Ik(x (tk_)) (235)

0<tp<t

b
Put G(s) = f s,x(s),fg(s,r,x(r))dr,fk(s,r,x(r))dr),
0 0
system(2.3.5) becomes

x(t ,%o,u) = +%O<Z<t f Z:(tk ~ )11 A(s, 0)x(s)ds
+ % tk(t—s)q LA(s, x)x(s)ds
R ]Z%q)z [ (t 54 1) B (s (s
; ]Z%@Z (=5 1) B+ s
+ %q) Z ftk (t — )71 G(s) ds

0<tp<t “thk-1
S 1 t_hi q-1
+me (t—s+hj) Bj(s+hj)u(s)ds
t1—h.
j+1

f (t—s)1"1G(s) ds + Z I (x (t,7)) (2.3.6)

0<tj<t

T

For brevity , let
tk

(ty — )T T A(s, x)x(s)ds

0<tp<t k-1

1 t
F( ) tk(t—s)q LA(s, x)x(s)ds

ZI‘L Z f (to—s+h)"" Bi(s+h)ue(s)ds (2.3.7)

0<t1<t to—h;

u) = ( )

Bt = F( 5 Z ftk . — )71 G(s) ds +F( il (t—s)q 16(s) ds

¥
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+ Z I(x (&) (2.3.8)

0<tk <t

Z(t,s)u(s)ds = ZF(q) > fl_hj (t,—s+1)" " B(s+h u(s)ds

0<t1<t t1- hj+1

Z F(q)ft (t=s+m)" B(s+hu)ds (2.3.9)

Substituting equations (2.3.7) and (2.3. 8) in(2.3.6) ,we have the mild solution:

m 1 tl*hj _
x(t ,xg,u) = p(t)+pE)+ ZTQ) Z f (ty—s+ hj)q ! B;(s + h;)u(s)ds
1=0 ¢

o<ty<t ~‘1-hj+1
= 1 Lh]‘ q-1
+Z —f (t—s+h;)"  Bj(s+hj)u(s)ds (2.3.10)
— r(q) t1_p.
1=0 j+1

2.4 . Basic Set Function and Properties
We shall define the set functions upon which our study hinges
Definition 2.4.1.(reachable set)
The reachable set R(ty,ty) of the systems (2.1) — (2..3) is given as

Z I'(q) Z ft lh (ty—s+ h,-)q_1 B]-(s + hj)u(s)ds

o<ty<t ~ ‘1-hj+1

R(ty,ty) = ~h; q-1
+ ) —— (t—s+h;)" Bj(s+hju(s)ds :
]ZO (g L_hm S

|u,-| <1foreveryjandu; €U S L,(J,X™);j=1,2,..,m

Definition 2.4.2. (attainable set)
The attainable set A(ty,ty) of the systems (2.1) — (2..3) is given as

Aty o) = {x(t ,Xg,U):UE U}’
whereU = {u € L,([ty , t;], X™): |u;| <1; j=1,2,..,m}
Definition 2.4.3. (target set)
The target set G(t1,ty) of the systems (2.1) — (2..3) is given as
G(t, to) ={x(t,xg,w):t=Tt>1t; =0, for fixedtand u € U}.
Definition 2.4.4.(controllability grammian)
The controllability grammian W (t,t,) of the systems (2.1) — (2..3) is given as
W(t,, ty) = Z(t,s)ZT(t,s) ,where T denotes matrix transpose.
2.5. Relationship between the set functions
We shall first establish the relationship between the attainable set and the reachable set to enable us see that once a property
has been proved for one set, and then it is applicable to the other.
From the equation (2.3.6), we have the attainable set A(t,ty) as:
A(ty, to) = [n(®) + R(ty, )],
forueU,t e [ty,t;],where n(t) = u(t) + B(t).
This means that the attainable set is the translation of the reachable set through the
originn € X"™. Using the attainable set, therefore, it is easy to show that the s
et functions possess the prperties of conexity ,closedness ,boundedness,,and compactness.
Also, the set functions are continuous on [0, ®)to the metric space of compact subsets of X™.
[12] and [29] gave the impetus for adoptation of the proofs of these
properties for systms(2.1) — (2.3) or systems (1.1) — (1.3).
Definition 2.5.1(relative controllability)
System(2.1) is relatively controllable on the interval [ty ,t;] if
A(ty,t) NG (L, tg) = D5t >ty
Definition 2.5.2. (properness)
System(Z 1) is proper in X on [ty , t1] if span R(t, ty) = X"

ie. CTZI‘(q th " (6= s+ k)" By(s + hyu(s)ds

o<ty<t ‘1-hj+1

N.
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m
1 [t .
+CTZ—r(q)j ! (t—S+hj)q 1B]-(s+h]-)u(s)ds=0 ae ,=C=0_CeX".
1=0 ¢

1-hjiq

3. Main Work
The optimal control problem can best be understood in the context of a game of pursuit
([30],[31] ). The emphasis here is the search for a control energy function that can
steer the state of the system of interest to the target set which can be a moving point
function or a compact set function in minimum time . In other words, the optimal control
problem is stated as follows: If
t* = infimum{t: A(t;,ty) N G(ty,ty) # @ forte [ty,t1]},t1 > ¢ty
That is,if t " is the infimum of all the times such that the system is relatively controllable,
Is there an admissible control u* such that the solution of the system with this admissible
control be steered into target ? The theorem that follows answ in part the questioners .

Theorem 3.1.(Existence Condition)

Consider the systems (1.1) — (1.3) as a dif ferential game of pursuit :
b

m t
Dix(t) = A(t,x)x(t) + ZBju(t — hj) + flt,x(@®) ,fg(t,s,x(s)) ds,fk(t,s,x(s))ds (1.1)
j=0 0 0
teJ=1[0,b],t+t,, k=123, ..,m
Dpleee, = L(x(6,™)  k=1,23,..,m (1.2)
x(0) = x, (1.3)
with its standing assumptions .Suppose A(t,ty) and G(t,ty,) are compact set functions,
then there exists an admissible control such that the state of the weapon for the pursuit
of the target satisfies systems (1.1) — (1.3) if and only if
A(ty,ty) NG(ty,ty) =@ fort € [ty,ty].
Proof
Suppose that the state z(t)of the weapon for pursuit of the target satisfies
systems(1.1) — (1.3)on the time interval [ty ,t;], then z(t) € G(t1,ty) fort € [ty , t1].
We need to show that there exists x(t ,u) € A(ty,ty) fort € [ty,t1] such that
z(t) = x(t,u) ,forsomeu € U.
Let {u"} be a sequence of points in U .since the constraint control set is compact, then the
sequence {u"} has a limit u as n tends to infinity
d.e.limu™=u

n-oo

Now x(t,xy,u) € A(t; , ty), fort € [ty ,t;] and from system(2.3.6) we have
1 b
x(t ,xp,u™) = x9+—= Z (ty — )T T A(s, x)x(s)ds
I'(q) te_t
0<tp<t
L[ LAGs, 0% ()d
+ — t—5)"""A(s,x)x(s)ds
), 7
m 1 to -
+ Z_F( ) Z (to—s+hj) Bj(s+hj)u0”(s)ds
1=0 q 0<ti<t "~ LO—h;
Ui 1 tl—h]- q-1
+ Z— Z (tl—s+hj) Bj(s+hj)u”(s)ds
= F(q) t1—h;+1
1=0 o<ti<t j
1 t )
+ == t, —s)T " G(s)ds
I CEBUE

0<tg<t " tk-1
- 1 t_hf q-1

+Z—f (t—s+hj) Bj(s+hj)u"(s)ds
T, ,
1=0 j+1

(= )11 6(s) ds + > k@) -

k 0<tp<t

@),

Taking limits on both sides asnn tends to infinity ,we have

¥
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" (ty — )T T A(s, x)x(s)ds

0<tp<t b1

lim x(t ,xo,u™)
n—-oo

F()

t

1
@ J,,
N 1 fo q-1 .
+ Z— Z f (to—s+hj) Bj(s+hj)11m uy"(s)ds
£,T@ s

0<ti<t " to-h;

(t —s5)T1A(s, x)x(s)ds

n 1 t1—h]- q-1 )
+ Z— J (tl—s+hj) Bj(s+hj)11mu”(s)ds
~T'(q) tih, n—0
1=0 0<ti<t j Tl
1 bk 1
+ — f (ty — )17 G(s) ds
I'(q) ‘

m
1 t_p.
+ZF_ ! (t—s+h) B(s+h)11mu”(s)ds
1=0 i+l

f(t—s)q 1G(s) ds + Z I (x (t:)

0<tj<t

F( )
= x(t,x,u) = F() Z f ty — )T A(s, x)x(s)ds

0<tp<t” ‘k-

+ F(l) tk(t—s)q TA(s,x)x(s)ds

m 1 tO q_l
+ Z— Z (to—s+hj) Bj(s+hj)u0"(s)ds

i 1 t1—h; _
+ z— z ! (tl—s+hj)q 15}(5+Iz}-)un(s)ds

1=0 0<ti<t " tl-hj+1

1 bk _
t Zf (t, — )71 G(s) ds

0<tp<t “thk-1

m
1 hj
+z— ! (t—s+h) B(s+h)u"(s)ds
1=0 St

F( )f (t—s)1"1G(s) ds + Z Ik(x (t,~ )) = x(t ,xy,u) € A(ty,ty) ,
0<ty<t
Since A(ty,ty) is compact.
Thus , there exists a control u € U such that x(t ,xy,u) = z(t) for t > t, and
t € [ty,tq]-
Since z(t) € G(ty,ty) and also in A(ty, ty), it follows that A(t;,ty) N G(ty,ty) # O for
t € [ty,t1].
Conversely, suppose that the intersection condition holds .
i.e.A(t,tp) N G(ty,ty) =@ fort € [ty,t1],
Then there exists z(t) € A(ty, ty) suchthat z(t) € G(t1,ty). This implies that
z(t) = x(t ,xo,u ) and hence establishes that the state of the weapon of pursuit of
the target satisfies systems (1.1) — (1.3). This completes the proof.

REMARK 3.4
The above stated and prove theorem3.4 in other words states that ,in any game of pursuit described bylmpulsive Quasi-Linear
Fractional Mixed Volterra - Fredholm Type Integro — Differential Equations in Banach Spaces with Multiple Delays in the
Control, it is always possible to obtain a control energy function to steer the systems’ state to the target in finite time
.However,a pyrrhic victory is desirable and is therefore,the insistence for the search of an optimal control. The next theorem is
therefore,a consequence of this understanding and provides sufficient conditions for the existence of a control energy function
that is capable of steering the state of the systems (1.1)— (1.3)via-a-via systems (2.1) — (2.3) to target set in minimum time.
3.5. Sufficient Conditions for the Existence of an Optimal Control
The theorem below informs us that relative controllability of a system guarantees the existence of its optimal control [32 ].

Theorem 3.2
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Consider the systems(1.1)- (1.3)via — a — via systems (2.1)- (2.3)
m t b
DIx(t) = A(t,x)x(t) + Z Bju(t — h]) + f|t,x(®) ,fg(t,s ,x(s)) ds,f k(t,s,x(s))ds |(1.1)
=0 0 0

teJ=1[0,b],t+t,, k=123, ..,m
Aleee, = L(x(t™)  k=1,23,..,m (1.2)
x(0) = xg (1.3)
With its basic assumptions.Suppose that system (1.1) is relatively controllable on the finite
interval [ty ,t;], then there exists an optimal control. By the controllability of system(1.1),
the intersection condition holds.

That is,.A(ty,ty) NG(ty,ty) # @ fort € [ty,t].
Hence ,x(t,xy,u) € A(ty,ty). Also, x(t , xy ,u) € G(tq,ty).So,put z(t) = x(t,xy ,u).
Recall that the attainable set A(ty,ty) is a translation of the reachable set R(ty,t,) through the
origin n,

i.e.A(ty,to) = n+ R(ty, tp),

where 1 is given as :

n=ul®)+ O,

then
At t)) = x + ty — )T L A(s, x)x(s)ds
1, Lo 0 F(q)0<tzk<tf
+ F(l) tk(t—s)q TA(s, x)x(s)ds

ZEW)EIL (to—s+1)"" B(s+h)uo()ds

0<ti<t  "0=h;

r(q) Z _[t ty —s)1G(s)ds + m (t—g)q 1G(s) ds

+ Z L(x (&) + Rt to):

0<tp<t
It follows that z(t) € R(ty, tp) fort € [ty, to], t; >ty and can be defined as:

ZF(CI) Z fi (o= 4 ) T B (s JuC)ds

0<ty<t ~til-hj+1

Z(t)=< o, i
+]=20Tq)ft1—h- 1(t_s+hj)q 1Bj(s+hj)u(5)d5 :

|uj| <1,foreveryjandu €U S L,(J,X™);j=1,2,..,m

0<tp<t

Let t* = infimumf{t: z(t) € R(ty,ty) ,fort € [ty,to]}.Now 0<t, <t; and
there is a sequence of times {t,} and the corresponding sequence of controls u"
{u"} c U with the sequence {t,} convrging to t* ,the minimum time.
Let, z(t,) = y(t, ,u™) € R(ty,ty). Also
|z() =y, u™)| < |z(t") — z(&,) + 2(t,) — y (&, u™)|
< z(8) — z(t)| + |2(8,) — y(&, u™)|
< z(&) — z(t)| + |y (¢, .u”) y(t,u™)|

<ua)—dtn+fnﬂ@na

By the continuity of z(t).which follows the contmulty of R(ty,ty) as a continuous set function
and the integrability of || y(s)||, it follows thaty (t*,u™) - z(t*)asn - o,
where,
z(t*) = y(t*,u*) € R(ty, ty).
For some u* € U and by the definition of t* ; u* is an optimal control.
This establishes the existence of an optimal control for the Impulsive Quasi — linear

Fractional Mixed Volterra — Fredholm — Type Integro — dif ferential Equations in
Banach spaces with Multiple Delays in the Control.

3.6 .Uniqueness of the Optimal Control.

Here, a new method of approach is derived for the proof of the existence of optimal control
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Theorem 3.3
Consider the systems(1.1)- (1.3)via — a — via systems (2. 1) (2.3)

DIx(t) = A(t,x)x(t) + Z B; u(t h; ) + flt,x(@), j (t,s,x(s))ds, jk(t s,x(s))ds | (1.1)
0
teJ=1[0,bl,t+t,, k= 1,2,3,...,
Dpliee, = L(x(6,™)  k=1,23,..,m (1.2)
x(0) = x, (1.3)
With its basic assumptions.Suppose that system (1.1) is relatively controllable on the finite
interval [ty ,t;]. Suppose that u* the optimal control of system(1.1), then it is unique.

Proof
Let u* and v* be optimal controls of system(1.1), then both u* and v* maximize

m

q-1 1 q-1

zr Z L —s+h)" " B(s+hy) +CTzrq)(t—s+hj) Bj(s +h))
0<t1<t 1=0

Fort € [ty ,t1], t1 > 0 ,over all admissible controls u € U ,and so we have the

inequality with u* as the optimal control

o J’tl‘hi Z o Z (ty —s+h)"" B;(s+ ) u(s) ds

1-hj+1 | =0 0<t1<t
t_p. m
+CTf ’ ZI‘( )(t—s+h]) ,-(s+h]-) u(s)ds
ti-hjyq [1=0

r t*l—hj = 1 q-1 .
< C Z— Z (t1—s+h;)" Bj(s+h)|u(s)ds
t1-nj+1 (120 0<t <t
1 _
+ CT [qu)(t* —s+h)’ 1B]-(s +hy)[u(s)ds (3.3)
‘ 0

Also ,using v*,asthe optimal control,we have the inequality

"1-hjiq

t1-n;
cr Z Z (t;—s+ hj)q B;(s + hj)|u(s) ds
ti-nj+1 | =0 (q) 0<ti<t
t_hi m 1
+ CTf Z (t—s+ h]) ,-(s + hj)|u(s)ds
tn I'(q)
j+1 | ]=0

T t*l_hi - 1 -1 *
= Cft Z( Z (t" —s+h)"  Bj(s+hy)|v'(s)ds

"1-hj+1 |10 0<t1<t
t_p, m 1 ~
+ CT[ ' Z —(t'—s+ h]-)q 1B]-(s + h;) [ v*(s)ds (3.4).
t* I'(q)
1-hji1 []=0

Taking maximum of u over [—1,1],the range of definition of u*,v* in (3.3 ) and (3.4) respectively,
we have the equations.

CTfl_hj Z Q) Z (t; - s+h]-)q_lBj(s+h,-) u(s)ds

1-hj+1|1=0 0<t<t
m
T t_hi 1 q-1
+ ——(t—s+ h; s+ n;)|u(s)as
C h] B] h] d
t I'(q)
1-hji1 | ]=0
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t*l—hj m 1 —
B CTft qu) Z (t" —s+h)"" By(s+hy) |w(s)ds

*
1-hj+1 | 1=0 0<ty<t

+CTf
t

for —1<s<landuu* €U
Also,

Z oL hy)" By(s + by) |w (s)ds (3.5).

*1h1=

CTij Z r(q) Z (tr—s+h)"" By(s+hy)|u(s)ds

lfhl-+1 1=0 0<ti<t
m
T t_hi 1 q-1
+ ——(t—s+ h; s+ n;)|u(s)as
C h))" "Bj(s+h; d
t I'(q)
1-hji1 | ]=0

t*l—hj m 1 —
= CT_[ ZT‘D z (tl*—s+h])q 1B](S+h]) v*(s)ds

x
1-hj+1|1=0 0<ti<t

—h
+ CTJ ZI‘ (tt—s+h .)q_lBj(s + h;) | v (s)ds (3.6).
S A )
for —1<s<1andu,v* € U,v" being optimal control.
Subtracting equation(3.6) from equation(3 5) ,we have

0= CTJ:I " Z Z (t1 —s+h;) B]-(s+hj) u'(s) ds

1-hj+1|1=0 0<t1<t

by | 1 a1 *
¥ CTL ZTq)(t_sJ’hi) Bj(s + hy)|w'(s)ds

1-hjiq []=0
* m
U1-h; 1
- CTf Zﬁ Z (t," s+h) ,-(s+h,-) v*(s)ds
t*l_h]‘"’l 1=0 q 0<ti<t
+ CT lzr( )(t —s+hl) B](s+h]) v*(s)ds
t*l ~hj+1

0= CTJ; - ZI‘(q Z (t; — s+h]-)q_1 B;(s+ h;) | [u (s)ds — v*(s)]ds

1-hj+1|1=0 0<ti<t
try o1 -1
+CT ——(t—s+h)" B;(s+h)|[w(s)ds — v'(s)]ds
[} Rogtmstmaissn
Z s+h-)q_lB-(s+h-) + ii(t—s+h-)q_18-(s+h-) {u*(s) —v'(s)}
F(CI) oLt / / / = I'(q) / / /

>0=u (s) v*(s),=> u*(s) = v*(s).
This establishes the uniqueness of the optimal control for the system (1.1).
and an optimal control for the system exists .
IVV. CONCLUSION
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