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Abstract- As we know, there exists requirement for 

unification of Special Relativity (SR) and General Relativity 

(GR) into one self-consistent theory. On the other side, there 

also exists requirement for unification of four fundamental 

interactions in the standard four dimensions (4D). Recently, it 

has been developed a new Relativistic Alpha Field Theory 

(RAFT or RAF theory) that can be used for the mentioned 

unifications. Namely, in RAF theory it has been introduced an 

alpha field as the function of two dimensionless field parameters 

α and α′. These parameters are the functions of the normalized 

potential energy of a particle in an alpha field. If there no 

potentials, then field parameters α and α′ become equal to unity, 

and all items in GR are transformed into the related items in 

SR. Thus, RAF theory unifies SR and GR into one 

self-consistent theory. Further, the fact that field parameters α 

and α′ are the functions of the normalized potential energy of a 

particle in an alpha field opens ability to unify all fundamental 

interactions in the standard four dimensions (4D). Here it has 

been shown that RAF theory is the adequate candidate for the 

unification of the four fundamental interactions in standard 4D, 

because it extends the applications of GR to the extremely 

strong gravitational field, including of the Planck’s scale. 

Index Terms-  Relativistic Alpha Field Theory (RAFT), 

Determination of field parameters, Unification of SR and GR, 

Unification of four fundamental forces 

I.  INTRODUCTION 

    In the today’s physics we have three self-consistent, 

relatively successful, theories: Special Relativity (SR), 

General Relativity (GR) and Quantum Mechanics (QM). 

Meanwhile, there exists requirement for unification of those 

three theories into one self-consistent theory. The first step 

could be the unification of SR and GR into one self-consistent 

theory. On the other side, there also exists requirement for 

unification of four fundamental interactions in the standard 

four dimensions (4D).  

   For unification of gravity interaction with the other tree 

fundamental interactions (weak, strong and electromagnetic), 

one can use the following two possibilities 1-6: a) trying to 

describe gravity as a gauge theory, or b) trying to describe 

gauge theories as gravity. The first possibility (a) has attracted 

a lot of attention, but because of the known difficulties, this 

approach set gravity apart from the standard gauge theories. 

The second possibility (b) is much more radical. The initial 

idea has been proposed by Kaluza-Klein theory 7, 8, which 

today has many variations 9-14, and takes the place in the 

modern theories like high energy physics (supergravity 

15-17 and string theories 18-28). These theories use five 

or more extra dimensions with the related dimensional 

reduction to the four dimensions. Meanwhile, we do not 
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know the answers to some questions like: can we take the 

extra dimensions as a real, or as mathematical devices?  

     Recently, it has been developed a new Relativistic Alpha 

Field Theory (RAFT) 29-31 that could be used for the 

unification of SR end GR, as well as, for unification of four 

fundamental interactions in the standard four dimensions 

(4D). This unification is based on the geometric approach. 

Namely, in RAF theory it has been introduced an alpha field 

as the function of two dimensionless field parameters α and 

α′. Those parameters are the functions of the normalized 

potential energy of a particle in an alpha field. If there no 

potentials, then field parameters α and α′ become equal to 

unity, and all items in GR are transformed into related items 

in SR. On that way, RAF theory unifies SR and GR into one 

self-consistent theory. 

     Further, the fact that field parameters α and α′ are 

dimensionless functions of the normalized potential energy of 

a particle in an alpha field opens ability to unify all 

fundamental interactions in the standard four dimensions 

(4D). This unification is based on the normalized potential 

energy level. We know that there exists successful unification 

of three fundamental interactions (electromagnetic, weak and 

strong). But, problem is with unification of the mentioned 

interaction with gravitational interaction. As it is well known 

1-6, GR cannot be applied to the extremely strong 

gravitational field including Planck’s scale, because of the 

related singularity. Here we present that Relativistic Alpha 

Field (RAF) theory can be used for the unification of all 

fundamental interactions in the standard four dimensions 

(4D). Namely, RAF theory extends the applications of GR to 

the extremely strong gravitational field, including the 

Planck’s scale 29-31. Therefore, RAF theory is the adequate 

candidate for the mentioned unification of four fundamental 

forces in standard four dimensions (4D). This is the 

consequence of the following predictions of RAF theory: a) 

no a singularity at the Schwarzschild radius and b) there 

exists a minimal radius at r = (GM/2c2) that prevents 

singularity at r = 0, i.e. the nature protects itself. Predictions 

a) and b) are presented in the second part of this theory 30. 

Since, Quantum Mechanics (QM) is also regular at the 

Planck’s scale, the possibility of the future unification of GR 

and QM is also open. One possibility of this unification is 

presented in the article Quantum Gravity in Relativistic 

Alpha Field Theory (QG in RAFT) 32. 

     In order to determine the field parameters α and α′, we 

started with the derivation of the relative velocity of a particle 

in an alpha field, v . This relative velocity is derived from 

the line element in an alpha field given by the nondiagonal 

form with the Riemannian metrics. Thus, the relative velocity 

of a particle in an alpha field, v , is described as the function 

of the field parameters α and α’ and a particle velocityv  in 
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the total vacuum (without any potential field). This structure 

of the relative velocity v directly connects the line elements 

of the SR and GR. Namely, in the case of the total vacuum 

(without any potential field), field parameters α and α’ 

become equal to unity and, consequently, the relative 

velocity v becomes equal to the particle velocity v  in the 

total vacuum. This is the transformation of the line element 

from the GR to the SR. 

     This paper is organized as follows. In Sec. II, we show 

derivation of the relative velocity of a particle in an alpha 

field v as the function of the field parameters α and α′. 

Derivation of the field parameters α and α′ in a general form, 

as the function of the normalized potential energy U is 

presented in Sec. III. Solution of field parameters in unified 

field has been described in sec. IV. Solution of field 

parameters in gravitational field is present in Sec. V. The 

solution of the field parameters α and α′ in the unified 

electrical and gravitational field is pointed out in Sec. VI. 

Finally, the related conclusion and the reference list are 

presented in Sec. VII and Sec. VIII, respectively. 

II. DERIVATION OF RELATIVE VELOCITY Vα 

     The basic problem of this paper is to determine the field 

parameters α and α′ of a particle in the unified four 

fundamental fields. The first step in this determination is the 

derivation of the relative velocity of a particle in an alpha 

field, v . 

     Proposition 1.  If the line element in an alpha field is 

defined by the nondiagonal form with the Riemannian 

metrics 33-36 

   

 

   

2 2 2

2 2 2

x

y z

ds c dt cdt dt

cdt dy cdt dz

dx dy dz ,

      

        

  
         (1)        

then the relative velocity of a particle in an alpha field, v , 

can be described as the function of the field parameters α and 

α’         

  

 c
v v .

2


  
                                                   (2) 

In the previous equation v is a particle velocity in the total 

vacuum (without any potential field), c is the speed of the 

light in a vacuum and  is a constant determined by the 

equations (11) and (20).  

     Proof if the Proposition 1. The line element, given by (1), 

can be transformed into the new form 

                         

   

 

2 2
2 2 2

2 2 2

2 2 2 2 2 2 2

yx

z

cdycdx

c dt c dtds c dt .
cdz dx dy dz

c dt c dt c dt c dt

     
   
 

 
   
     
 

                                                                                          (3)  

Now, we introduce the following substitutions into (3): 

   

   

2 2 2 2

x y z

x y z x yx y

zz

dx dy dz
v , v , v ,

dt dt dt

v v v v , cv cv

cv cv.

   

          

        

(4) 

Applying the substitutions (4) to the relation (3) we obtain the 

new form of the line element as the function of the particle 

velocity, v , and alpha field parameters α and α’ 

 

 2
2 2 2

2 2

cvv
ds c dt .

c c

   
      

 

                 (5)  

The related line element, valid in the Special Relativity, can 

be obtained from equation (5) by putting α = α’ =1. This is the 

transformation of the line element from the General 

Relativity to the Special Relativity 

 

2
2 2 2

2
1

v
ds c dt .

c

 
   

 
                                            (6)  

The relations (5) and (6) confirm unification of SR and GR on 

the line elements level. Thus, the form invariant relation of 

the line element in an alpha field should have the form 

  

2
2 2 2

2
1

v
ds c dt .

c


 

   
 
 

                                              (7)  

In the equation (6) we have relative velocity v for particle 

motion in vacuum (without any potential field). In the 

equation (7) we have relative velocity v for particle motion 

in an alpha field. Using the identification between equations 

(5) and (7) we obtain the following relations: 

 

 

 

22

2 2 2

2 2

2 2 2

cv vv
1 ,

c c c

cvv v
1 .

c c c





  
     

  
   

                 (8) 

Now, we can employ the assumption of the particle 

velocity, v , given by (2) 

 

 

   
222 2

2 2 2

2

4

c
v v ,

cvv v
.

c c c





  
  

      
  

                  (9)  

It follows the comparison between the second relations in (8) 

and (9) that results by the following identity 

  

   

   

2 2

2 2 2 2

2 22 2

1

1
4 4

cv cvv v

c c c c

, .

      
    

      
   

    (10) 

The last relation in (10) can be transformed into the simplest 

form that gives the very important relation between the field 

parameters α and α’: 
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 
22
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1 1 1
4

1
2

, , ,

.

  
       

   
  

 

              (11) 

From (11) we obtain the definition of the constant  and 

direct relation between field parameters α and α’. This 

relation will be employed in the process of the determination 

of the field parameters α and α’. 

   Following the previous consideration, we can conclude that 

the equation (2) describes the relative velocity of a particle in 

an alpha field v if the conditions given by (11) are satisfied: 

  

  2

2

1 1
2

1
2

c
v v , if , ,

and .



  
      

  
 

 

             (12) 

On that way, the proof of the proposition 1 is finished. 

      Proposition 2. The last relation in (12) satisfies the     

well-known condition 1, 2, 34-36  for the metric tensor of 

the line element (1) 

    
  1det g .                                                        (13) 

      Proof of the Proposition 2. The general Riemannian line 

element 34 can be introduced by the following expression 

   

 

     

2
2 0 0 1 0 2

00 01 02

2 2 2
0 3 1 2 3

03 11 22 33

2 2

2

ds g dx g dx dx g dx dx

g dx dx g dx g dx g dx .

  

   

     

                                                                                      (14)  

Here g are the related metric tensor components of the 

Riemannian manifold. Using comparison of the equations (1) 

and (14), we can conclude that non-null components of the 

metric tensor g in the line element (1) are determined by the 

following relations: 

 

 

 

 
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02 20 11 22

03 30 33

2

1 1
2

1
2

x
x

y
y

z
z

g , g g b ,

g g b , g , g ,

g g b , g .

  
    

  
    

  
       

(15) 

Following the relations (14) and (15), the general form of the 

line element (1) can also be presented by the new expression 

   

 

     

2
2 0 0 1 0 2

2 2 2
0 3 1 2 3

2 2

2

x y

z

ds dx b dx dx b dx dx

b dx dx dx dx dx .

   

   

       (16)  

Comparing (1) and (16) we can conclude that the related 

contravariant coordinates of the line elements (1) and (16) are 

determined by the relations: 

   
0 1 2 3dx c dt, dx dx, dx dy, dx dz .                 (17) 

From the relations (15) an (16) one can derive a matrix 

expression of the components of the general covariant metric 

tensor gμν in an alpha field 

  

1 0 0

0 1 0

0 0 1

x y z

x

y

z

b b b

b
g .

b

b



 
 
      
 
  

     (18) 

This metric tensor is symmetric and has ten non-zero 

elements, as we expected that should be. The matrix 

expression of the metric tensor (18) is nondiagonal and 

belongs to the well-known Riemannian metrics 34. 

Therefore, the related line element (1) is also called a 

nondiagonal line element. In the case of vacuum, field 

parameters α = α’ = 1 and metric tensor (18) is transformed 

into the well-known metric tensor in SR 

    

 1 1 1 1diag .
    

                  

(18a)

  

The relations (18) and (18a) confirm unification of SR and 

GR on the metric tensor level. The determinant and the trace 

of the matrix (18) are presented by the relations: 

  
 2

2 2 2 2

3R

x y z

det g b , T g ,

b b b b .

 
           

  

  (19) 

     Now, we recall the well-known condition (13) that should 

be satisfied by any metric tensor 1,34, 35. Including the 

determinant (19) into the condition (13) we obtain the 

important relation between field parameters  and ':        
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2
2

1
4

1 1
2

det g b ,

, .



  
         

   
    

 

     

                                                                                        (20) 

On that way, the proof of the proposition 2 is finished. The 

condition (20) is also satisfied for  = ' = 1 that is related to 

the particle motion in a total vacuum (without any potential 

field). This case belongs to the Special Theory of Relativity.  

     Proposition 3. Let d and dt are differentials of the proper 

time and coordinate time of the moving particle, respectively. 

Further, let H is a transformation factor, as an invariant of an 

alpha field, and v is a particle velocity in that field given by 

(2). For that case, the transformation factor H has the 

following form 

 
1 2 1 2

2 2

2 2 2
1

/ /
cvvdt v

H .
d c c c

 


     

              

                                                                                        (21) 

     Proof of the Proposition 3. In order to prove the relation 

(21) we can start with the usual definition of the differential 

of proper time d 

 

2 2
2 2 2 2 2

2 2 2 2

1 1ds dt
d dt H c dt .

c H d ds


      


     

                                                                                        (22) 

Applying the line element (5) to the second relation in (22), 

we obtain the second form of the transformation factor H 

given by (21) 
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 
1 2

2

2 2

/
cvdt v

H .
d c c


   

        
           (23) 

On the other hand, employing the identification given in the 

first relation in (8), one obtains the first form of the 

transformation factor H given by (21) 
1 2

2

2
1

/
vdt

H .
d c




 

   
   

                                              (24) 

The first relation in (8) also shows that the first and the 

second form of the transformation factor H are equal each to 

the other.  

   Following the equations (23) and (24) we can conclude that 

the proposition 3 is proved. Furthermore, if a particle is 

moving in a total vacuum (without any potential field), then 

we have  = ' = 1, and the relation (21) is transformed into 

the transformation factor   valid in the Special Relativity 

  

1 2
2

2
1 1

/
dt v dt

' , H ,
d dt'c

d dt' .


 

              

  

 (25) 

Relations (21) and (25) confirm unification of SR and GR on 

the transformation factor level.  

III. SOLUTION OF THE FIELD PARAMETERS 

     Proposition 4. Let m0 is a rest mass of a particle, U is a 

potential energy of a particle in an alpha field, c is, as usual, 

the speed of the light in a vacuum and ( i ) is an imaginary 

unit. In that case the field parameters α and α′ can be 

described as dimensionless (unitless) functions of the 

normalized potential energy U of a particle in an alpha field. 

There are four solutions for both parameters α and α′ in an 

alpha field that can be presented by the following relations: 

 
2

2 2
0 0 1

1 2 2

3 3

4 4

2 1

1 1 1

1 1

1 1

f (U ) U / m c U / m c , i f (U ) ,

i f (U ) , i f (U ) , i f (U ) ,

i f (U ) , i f (U ) ,

i f (U ) , i f (U ).

    

        

       

       
 

                                                                                        (26)         

     Proof of the Proposition 4.  Because there are two field 

parameters, α and α′, we have to find out two equations for 

solution of these parameters. At the first, the field parameters 

α and α′ should satisfy the condition given by (20) 

  

 

 

22

22

1
4

1
4

det g ,

.



  
       

  
  

          (27) 

From the equation (11) we know that parameter κ = ± 1. Thus, 

we can substitute this identity into the last relation in (27). In 

that case we obtain the following relation 

  

   
2 2 22

1
4 4 2

.
       

       
 

   

                                                                                        (28) 

Following (27) and (28) we can conclude that the well-known 

condition for the metric tensors given by (13) is transformed 

into the useful relation between field parameters α and α′ that 

should be satisfied: 

   
1 2

2
, .


                         (29) 

Using the multiplication of the last relation in (29) by field 

parameter α one obtains the following quadratic equation 

   
2 2 0 .                                                         (30) 

This is the first equation that will be employed in the process 

of determination of the field parameters α and α′.  

   The second equation should connect the field parameters α 

and α′ with the potential energy of a particle in an alpha field. 

In that sense, we can employ the related covariant energy 

equation Ec for a particle with rest mass m0. In order to 

determine the covariant energy equation Ec, we can start with 

the components of the covariant four-momentum vector:  

 

0 1 2 3 0 1
0 1

0 2 0 3
2 3

0 1 1 2 2 3 3
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0 1 2 3
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
     

       

   

   

     

                                                                                        (31) 

Here Pν are the components of the contravariant 

four-momentum vector and H is given by (21). The covariant 

energy equation Ec in an alpha field can be derived by using 

the following relations: 

  

0 1
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2 3
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c x

y z
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P , E P c P c b P c

c

b P c b P c.


    

 

         (32) 

Now, we can substitute the contravariant momentums Pν 

from (31) and parameters (bx, by, bz) from (15) into (32). As 

the result, we obtain the covariant energy equation Ec, valid 

for an alpha field: 
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            (33) 

From (33) we can see that the covariant energy equation Ec is 

in the linear form. The same equation has also been obtained 

by separately derivation of the generalized relativistic 

Hamiltonian, cE  , in an alpha field 37. The related 

nonlinear equation of Ec can be obtained by applying of the 

square operation to the relation (33) (see 37): 
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(33a) 
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Here eE and eP are the extended covariant energy and 

extended momentum, respectively. The equations in (33a) are 

form-invariant to the related equations in Special Relativity. 

In the case of vacuum (without any potential field), field 

parameters α = α′=1 and the relations in (33) are transformed 

into the equations valid in the Special Relativity: 

    

1 2
2

2
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/
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v
E m c , H .

c


 
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         (33b) 

Relations (33), (33a) and (33b) confirm unification of SR and 

GR on the covariant energy equation level.  

     Now we assume that a particle is standing in an alpha 

field. For that case, a particle velocity is equal to zero ( 0v  ) 

and the relations in (33) are transformed into the following 

equations:  
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v E Hm c , H

E m c .
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   (34) 

On the other hand, we know that the energy of the particle 

with rest mass m0 standing in a potential field ( 0v  ) is 

equal to the sum of the rest mass energy m0c
2 and the related 

potential energy U of the particle in that field 37-39 
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                        (35) 

Comparing the relations (34) and (35), we can recognize the 

following identity: 
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' '     (36) 

This is the second equation that will be employed in the 

process of determination of the field parameters α and α′. By 

the inclusion of the second relation in (36) into (30) we obtain 

the quadratic equation in the following form 
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                                    (37) 

This quadratic equation can be split into the two related 

quadratic equations: 
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                                                                                        (38) 

The first quadratic relation in (38) gives the first two 

solutions of the field parameter α1 and α2, while the second 

quadratic relation in (38) gives the next two solutions of the 

field parameter α3 and α4: 
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             (39) 

The related four solutions of the field parameter α′ can be 

obtained by the substitution of the parameters α from (39) 

into the last relation in (29):   
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           (40) 

Thus, the four solutions of the field parameters α and α′ can 

be obtained by the unification of the two parameter structures 

given by (39) and (40):  
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i f (U ) , i f (U ) .

(41)         

 Because the relations in (41) are equal to the relations in (26), 

we conclude that the proposition 4 is proved. 

     Further, it is easy to prove that all i i  pairs from (41) 

satisfy the relation (36) giving an invariant'  
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 
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= '         (42) 

For calculation some of the quantities in an alpha field we 

often need to know the difference of the field parameters 

(α-α′):

1 1 2 2

3 3 4 4

1 1 3 3 2 2 4 4

2 2

2 2

i f (U ) , i f (U ),

i f (U ), i f (U ),

( ) ( ), ( ) ( ).

      

      

         

(43) 

The obtained relations in (41), (42) and (43) are valid 

generally and for their calculation we only need to know 

potential energy U of the particle in the related potential field. 

     Remarks 1.  From the equations (41), (42) and (43) we can 

see that there are three very important properties of the 

solutions of the field parameters α and α′: a) parameters α and 

α′ are dimensionless (unitless) field parameters, b) there are 

four solutions of the field parameters α and α′ that reminds us 

to the Dirac’s theory 38, and c) the quantity αα′ is an 

invariant related to the four solutions of the field parameters α 

and α′. 

IV. SOLUTION OF THE FIELD PARAMETERS IN UNIFIED FIELD 

     When two protons meet each other in a space-time, they 

experience all four of the fundamental forces of nature 

simultaneously. Thus, if protons are present in a unified field, 

then the potential energy Uu between two protons at 

distance r is described by the well-known relation 38-42: 
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i

u e g w s i i

C
U U U U U , U exp( r / R ),

r

i e,g ,w,s.

     



 (44)
 

Here index i = e, g, w and s, denote potential energy in 

electrical, gravitational, weak and strong interactions, 

respectively, Ci
2 is a strength of the interaction and Ri is range 

of interaction in i-th field. The potential energy associated 

with each force acting between two protons is characterized 

by both the strength of the interaction and the range over 

which the interaction takes place. In each case the strength is 
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determined by a coupling constant, and the range is 

characterized by the mass mm of the exchanged particle. In 

each case the interaction is due to the exchange of some 

particle whose mass mm determined the range of the 

interaction, R = h/mmc, where h is Planck’s constant and c is 

the speed of the light in vacuum.  The exchanged particle is 

said to mediate the interaction.  
     The four solutions of the field parameters α and α′ for a 

particle in a unified field can be obtained by the substitution 

of the potential energy Uu from (44) into the general relations 

given by (41): 
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             (45) 

Here ( i ) is an imaginary unit and m0 is a rest mass of the 

particle in a unified field. The first four lines in (45) describe 

a strong unified field. If the quadric term is close to zero, 
2 2

0 0u(U / m c )  , then the field parameters (45) describe a 

weak unified field. It is easy to prove that the all αα′ pairs 

from (45) satisfy the relations in (34), (35) and (36): 
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                                                                                         (46) 

Here Ec is the covariant energy of a particle standing ( 0v  ) 

in a unified field. The differences of the field parameters 

(α-α′) for a particle in a unified field have the form: 
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   Remarks 2. The αα′ term is a quadratic function of the 

potential energy of a particle in a unified field. But the related 

covariant energy Ec of a particle, standing ( 0v  ) in the 

unified field, is a linear function of that potential energy. This 

transformation is obtained here on the natural way, without 

any a priory assumption. 

V. SOLUTION OF THE FIELD PARAMETERS IN GRAVITATIONAL 

FIELD 

   If a particle with the rest mass m0 is in a gravitational field, 

then the potential energy of the particle in that field Ug is 

described by the well-known relation 1-6, 39-42:
      2
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    (48) 

Since in a gravitational field, the mediate particle is graviton 

with the mass mm = 0, the range of the interaction is infinite,   

R =  ,  and the related potential energy from (44) is reduced 

to the relation (48). Here Vg = Ag0 is a scalar potential of the 

gravitational field, G is the gravitational constant, M is a 

gravitational mass, m0 is a rest mass of the particle in that 

field and r is a gravitational radius. The four solutions of the 

field parameters α and α′ for the particle in a gravitational 

field can be obtained by the substitution of the potential 

energy Ug from (48) into the general relations in (41):  
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                                                                                        (49) 

The first three lines in equations (49) describe a strong 

gravitational field. If the quadratic term 
2 2 0( GM / rc )   

then the field parameters (49) describe a relatively weak 

gravitational field as we have in our solar system. It is easy to 

prove that the all αα′ pairs from (49) satisfy the relations in 

(34), (35) and (36) for a particle that is standing ( 0v  ) in a 

gravitational field: 
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The differences of the field parameters (α-α′) for a particle in 

a gravitational field have the forms: 
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                                                                                        (51) 

     Remarks 3. In the second part of RAF theory 30 it has 

been shown that field parameters (49) satisfy the Einstein’s 

field equations with a cosmological constant  = 0. In the 

case of a strong static gravitational field 43-46,50, the 

quadratic term 
2 2( GM / r c ) generates the related 

energy-momentum tensor Tη for the static field. For that 

case, we do not need to add by hand the related 

energy-momentum tensor Tη on the right side of the 

Einstein’s field equations.  

     The second interpretation could be that the quadratic term 
2 2( GM / r c ) generates the cosmological parameter   as a 

function of a gravitational radius 47 for Tη = 0. It has been 
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shown 48 that this solution of   is valid for both Planck’s 

and cosmological scales.  

     In the case of a relatively weak static gravitational field, 

like in our solar system, the field parameters (49) satisfy the 

Einstein’s field equations in a vacuum (Tη = 0,  = 0). The 

general metrics of the relativistic alpha field theory 33 has 

been applied to the derivation of dynamic model of nanorobot 

motion in multipotential field 49.  

VI. SOLUTION OF THE FIELD PARAMETERS IN UNIFIED 

ELECTRICAL AND GRAVITATIONAL FIELD 

   Let the source of the unified electrical and gravitational 

fields is an object with mass M, electric point charge Q and 

radius r. Thus, if a particle is an electron with a rest mass 

0m and an electric charge q , then the potential energy of the 

electron in the unified field, Uu, is described by the relation 

38-42:
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Since in an electrical field and in a gravitational field, the 

mediate particles are photon and graviton, respectively, with 

the null masses (mph = 0, mg= 0), the ranges of the 

interactions are infinite (Re =   , Rg =  ), and the related 

potential energy from (44) is reduced to the relation (52). 

Here Ue is the potential energy of a particle in an electrical 

field, Ug is the potential energy of the particle in a 

gravitational field, Ae0 is a scalar electric potential, Ag0 is a 

scalar gravitational potential and G is a gravitational constant. 

The potential energy function f(Uu) for this unified field can 

be obtained by using the following relations: 
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                                                                                        (53)

 

In relation (53), parameter Ge= q/m0 is the Kaluza-Klein 

constant 6-8, obtained here on the natural way. The four 

solutions of the field parameters α and α′ for the particle in the 

unified electrical and gravitational field can be obtained by 

the substitution of the potential energy function f(Uu) from 

(53) into the general relations (41):  
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                                                                                        (54) 

Generally, relations (54) describe a strong unified field. But, 

if the quadratic term is close to zero,
2 2 0eg( M / rc )  , then 

the field parameters (54) describe a relatively weak unified 

field. It is easy to prove that the all αα′ pairs in (54) satisfy the 

relations in (34), (35) and (36): 
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Here Ec is the covariant energy of an electron standing 

( v 0 ) in the unified electrical and gravitational field. The 

differences of the field parameters (α-α′) for an electron in 

this unified field have the forms: 
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     Remarks 4. In the second part of this theory 30 it has 

been shown that field parameters (54) satisfy the Einstein’s 

field equations without a cosmological constant ( = 0). In 

the case of the strong unified field, the quadratic term 

2 2
eg( M / rc ) generates the related energy-momentum 

tensor Tη of the unified field. For that case, we do not need to 

add by hand the related energy-momentum tensor Tη of the 

unified electrical and gravitational field on the right side of 

the Einstein’s field equations.  In the case of a relatively weak 

unified field the quadratic term 
2 2 0eg( M / rc )  , and the 

field parameters satisfy the Einstein’s field equations in a 

vacuum (Tη = 0,  = 0). Following this approach, the unified 

energy momentum tensor and geodesics equations, with the 

unified electrical and gravitational forces in 4D, are presented 

in the second 30 and third 31 parts of RAF theory, 

respectively. 

VII. CONCLUSION 

   Recently developed Relativistic Alpha Field Theory 

(RAFT) has been used for the unification of Special 

Relativity (SR) and General Relativity (GR) into one 

self-consistent theory. Further, RAF theory has also been 

applied to the process of the unification of four fundamental 

interactions in the standard four dimensions (4D). The both 
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unifications are consequences of an introduction of field 

parameters α and α′ as the functions of the normalized 

potential energy of a particle in an alpha field. Thus, it has 

been shown that RAF theory is the adequate candidate for the 

mentioned unifications because it extends the applications of 

GR to the extremely strong gravitational field, including the 

Planck’s scale. Since, Quantum Mechanics (QM) is also 

regular at the Planck’s scale, the possibility of the future 

unification of GR and QM is also opened 32.  
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