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     Abstract-  In Relativistic Alpha Field Theory (RAFT or RAF 

theory) there are two the most intriguing conclusions. The first 

one is that the Energy Momentum Tensor (EMT) of 

gravitational static field obeys the following properties: 1) the 

symmetry, 2) the non-negative energy density and 3) zero trace 

of EMT. Here the non-negative energy density means that the 

energy density is positive, but at the radius rc = GM/c2 is zero. 

This radius corresponds to the point where the acceleration is 

equal to zero because negative acceleration is changing into the 

positive one. This is the crucial difference between RAF theory 

of gravitational static field and field gravity approach, where 

energy density is positive and without null point. At the radius 

rc free fall velocity is maximal and equal to the speed of the light 

in vacuum c. The second conclusion is that the gravity force is 

attractive  ( in the region rc < r < ∞) and repulsive (in the region 

rmin ≤ r < rc ,  where rmin=GM/2c2). At the minimal radius rmin, 

repulsive force is maximal. 

Index terms -  Relativistic Alpha Field Theory (RAFT), 

Physical properties of EMT in a gravitational static field, 

Attractive gravitational force, Repulsive gravitational force, 

Extremely strong gravitational fields. 

I. INTRODUCTION 

     As it is well known, the problem of mathematical and 

physical definition of energy-momentum relation of the 

gravitational field started with the introduction of General 

Relativity (GR) 1-5. Namely, GR is based on the 

geometrical approach to the description of a gravitational 

field. The most important feature of the Einstein’s equations 

is that the right side of the equations does not include 

energy-momentum of the gravitational field itself. This 

corresponds to the conclusion that in GR theory the gravity is 

not a material field. As the consequence, the Einstein’s 

equations do not express the energy conservation of matter 

plus gravitational field. Further consequences are negative 

energy density for a static gravitational field and violation of 

the energy conservation in expanding space-time. The 

absence of the energy density of the gravitational field itself 

in GR also leads to the problem of quantization of the 

gravitational field, because one cannot define the energy of 

graviton as quanta of the field.  

     There are several attempts in combination of GR and field 

approach in field gravity theories 6-8 in order to solve the 

mentioned problems. But, in the reference 9, it has been 

shown that there is the internal inconsistency in the 

mentioned theories. The common disadvantage of the 

mentioned approaches is the fact that they do not satisfy the 

all of the required physical properties of the 

energy-momentum tensor (EMT) for gravitational static field. 

Namely, from the quantum relativistic field theories of the 
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other physical interaction 10, the EMT of massless boson 

field obeys the following three important conditions: 

symmetry, T T  ; positive energy density for static and 

free field, 00 0T  ; and zero trace,
 

0T  . These conditions 

must be fulfilled within the consistent field approach for both 

static and free fields, as it is the case of the electromagnetic 

field. 

     The field approach to gravity was also considered in a 

number of studies 11-13. Quantum description of the field 

approach is presented in the references 14-17. The basic 

principles of the field gravity theory have been discussed in 

the reference 18. A consistent field gravity theory, based on 

inertial frames, Minkowski space-time and localizable 

positive energy of the gravitational field, has been discussed 

in 19-22. The common physical elements in the description 

of all fundamental interaction are pointed out in the 

references 10,18,21. Generally, there are two the most 

intriguing consequences of the consistent field gravity theory 

10. The first one is that the EMT obeys the required 

properties: 1) the symmetry, 2) the positive energy density for 

static and free field and 3) zero trace of massless field. The 

second consequence is that the gravity force has an ordinary 

quantum nature and is presented by the sum of the attraction 

(spin 2) and repulsion (spin 0) components. 

     In this paper we use the geometrical approach in the 

Relativistic Alpha Field Theory (RAFT) of gravitational 

static field 23-25. The basic difference between RAF theory 

and classical General Relativity (GR) 2,26-30 is in the 

process of the determination of the field parameters.  Namely, 

in RAF theory two dimensionless scalar field parameters α 

and α′ are introduced 23. These parameters are determined 

on the condition that they must satisfy both the covariant 

energy equation and the geometric properties of the 

Einstein’s field equations. On that way, the field parameters α 

and α′ become the functions of the normalized potential 

energy of a particle in a gravitational field. As the 

consequence, the EMT on the right side of the field equations 

is automatically derived from the left side of the same 

equations. Further, RAF theory solves the following items: 

problem of singularity by discovery of the existence of the 

minimal radius in gravitational field 24, problem of 

determination of the source of dark energy by discovery of a 

positive (repulsive) gravitational force 25,33 and problem 

of unification of the other fundamental forces with 

gravitational force in the standard four dimensions (4D) 

23-25. In the recent papers it has been shown that the 

singularity and dark energy in GR are direct consequences of 

vacuum solution of field equations 31 and that RAF theory 

extends the applications of GR to the extremely strong 

gravitational field, including Planck’s scale 32. Thus, RAF 

theory is general field theory in the sense that it can be applied 
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both to weak and extremely strong gravitational field. In the 

case of the relatively weak field (like in our solar system) 

RAF theory is reduced to GR. In the case of the total vacuum 

without any potential field (α = α′ =1), RAF theory is reduced 

to the Special Relativity (SR). 

     In this paper it is presented that in RAF theory there are 

also two the most intriguing conclusions, regarding to the 

EMT of gravitational static field. The first one is that the 

EMT obeys the following properties: 1) the symmetry, 2) the 

non-negative energy density and 3) zero trace of EMT. The 

second conclusion is that the gravity force is attractive (in the 

region
2

c cr r , r GM / c < < ) and repulsive (in the region 

22min c minr r r , r GM / c< ). At the minimal radius minr , 

repulsive force is maximal. In that sense, the situation at 
2

cr GM / c corresponds to the point where the 

acceleration is equal to zero and free fall velocity is maximal 

and equal to the speed of the light in vacuum c 23-25. At the 

same point the potential energy is equal to zero and the 

kinetic energy is maximal. Further, at this point the attractive 

gravitational acceleration (force) is changing into the 

repulsive one and vice versa. Since at the radius cr the kinetic 

energy is maximal and the potential energy is zero, the free 

fall motion continues to the minimal radius minr where the 

free fall velocity is equal to zero. At the minimal radius the 

repulsive acceleration (force) is maximal and repulsive 

motion is started. At the radius cr the repulsive velocity 

becomes maximal and equal to the speed of the light in 

vacuum c. Further, repulsive velocity is decreasing to the zero 

at radius r  , or at the maximal radius maxr  . 

     In the property 2) of EMT, the non-negative energy 

density means that the energy density is positive, but at the 

radius cr is equal to zero. This is the crucial difference 

between RAF theory of gravitational static field and field 

gravity approach where there no zero point of the energy 

density. Namely, at the radius cr we have the changing from 

the attraction to the repulsion force and therefore the potential 

energy must be zero. That is why the energy density of EMT 

in RAF theory of static gravitational field, at the radius cr , 

should be equal to zero. For all radiuses different from cr  

energy density of EMT is positive in a static gravitational 

field as we expected that should be. 

     The theoretical proof that the positive gravitational force 

could be the source of dark energy is presented in 48. The 

generalized relativistic Hamiltonian in an alpha field is 

derived in 49. As the result we obtain linear Dirac’s like 

relativistic Hamiltonian as the function of the field 

parameters α and α′. By applying quadratic operation to the 

linear form of the Hamiltonian we obtain the related 

nonlinear relativistic Hamiltonian in an alpha field. In the 

case of the vacuum without any potential field (α = α′ = 1), the 

nonlinear Hamiltonian is transformed into the well-known 

nonlinear form, valid in the Special Relativity. 

     This paper is organized as follows. In Sec. II, we started 

with the solution of the field parameters α and α′ in a general 

form, as the function of the normalized potential energy U of 

a particle in the related field.  Solution of the field parameters 

α and α′ in a gravitational field is considered in Sec. III. 

Derivation of energy-momentum tensor for gravitational field 

is pointed out in Sec. IV. The theoretical proofs that RAF 

theory satisfies required properties of EMT in gravitational 

static field are presented in Sec. V. Finally, the related 

conclusion and the reference list are presented in Sec. VI and 

Sec. VII, respectively. 

II. SOLUTION OF THE FIELD PARAMETERS IN AN ALPHA FIELD 

     Relativistic Alpha Field Theory (RAFT) is based on the 

following two definitions 23: 

     Definition 1. An alpha field is a potential field that can be 

described by two dimensionless (unit less) scalar parameters 

α and α′. To this category belong, among the others, electrical 

and gravitational fields. 

     Definition 2. Field parameters α and α′ are described as 

the scalar dimensionless (unit less) functions of the 

normalized potential energy U of a particle in an alpha field.  

     The line element in an alpha field is defined by the 

nondiagonal form with the Riemannian metrics 34-37:
       

   

 

2 2 2

2 2 2

x y

z

ds c dt cdt dt cdt dy

cdt dz dx dy dz .

         

       

                                                                                     
(1) 

The relative velocity of a particle in an alpha field, v , is 

described as the function of the field parameters α and α’ 23        

 

 c
v v .

2


  
                                                   (2) 

In the previous equation v is a particle velocity in the total 

vacuum (without any potential field), c is the speed of the 

light in a vacuum and  is a constant. The relations in (1) and 

(2) satisfy the well-known condition 26,27,35-37  for the 

metric tensor of the line element (1) 

   
  1 1     det g , .                                          (3) 

     Let d and dt are differentials of the proper time and 

coordinate time (respectively) of the moving particle in an 

alpha field. Further, let H is a transformation factor, as an 

invariant of an alpha field, and v is a particle velocity in that 

field given by (2). For that case, the transformation factor H 

has the following form 

  

 
1 2 1 2

2 2

2 2 2
1

/ /
cvvdt v

H .
d c c c

 


     

              

  

                                                                                      (4)

 Furthermore, if a particle is moving in a total vacuum 

(without any potential field), then we have  = ' = 1, and the 

relation (4) is transformed into the transformation factor   

valid in the Special Relativity:

 1 2
2

2
1 1

/
dt v dt

' , H ,
d dt'c

d dt' .


 

              

  

      (5) 

     Let m0 is a rest mass of a particle, U is a potential energy of 

a particle in an alpha field, c is the speed of the light in a 

vacuum and ( i ) is an imaginary unit. In that case the field 
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parameters α and α′ can be described as dimensionless (unit 

less) functions of the normalized potential energy U of a 

particle in an alpha field. There are four solutions for both 

parameters α and α′ in an alpha field that can be presented by 

the following relations 23: 

  

 
2

2 2
0 0 1

1 2 2

3 3

4 4

2 1

1 1 1

1 1

1 1

f (U ) U / m c U / m c , i f (U ) ,

i f (U ) , i f (U ) , i f (U ) ,

i f (U ) , i f (U ) ,

i f (U ) , i f (U ).

    

        

       

       

 

                                                                                         (6)         

The four solutions of the field parameter α in (6) can be 

presented in the form 

  

2

1 2 2 2
0 0

2

3 4 2 2
0 0

2
1

2
1

,

,

U U
i ,

m c m c

U U
i .

m c m c

 
     

 
 

 
      

 
 

                 (7) 

The related four solutions of the field parameter α′ in (6) can 

be presented with the following relations   

   

2

1 2 2 2
0 0

2

3 4 2 2
0 0

2
1

2
1

,

,

U U
i ,

m c m c

U U
i .

m c m c

 
    

 
 

 
     

 
 





             (8) 

Thus, the four solutions of the field parameters α and α′ can 

be obtained by the unification of the two parameter structures 

given by (7) and (8):  

 
2

2 2
0 0

1 2 1 2

3 4 3 4

2

1 1

1 1

  

    

      





, ,

, ,

f (U ) U / m c U / m c ,

i f (U ) , i f (U ) ,

i f (U ) , i f (U ) .

  (9)         

Further, it is easy to prove that all i i  pairs from (9) are 

creating an invariant'  

2

2
0

1 1 2 3 4i i

U
, i , , . .

m c

 
      

 
 

= '          (10) 

For calculation some of the quantities in an alpha field we 

often need to know the difference of the field parameters:  

  

1 1 2 2

3 3 4 4

1 1 3 3 2 2 4 4

2 2

2 2

i f (U ) , i f (U ),

i f (U ), i f (U ),

( ) ( ), ( ) ( ).

      

      

         

(11) 

The obtained relations in (9), (10) and (11) are valid generally 

and for their calculation we only need to know potential 

energy U of the particle in the related potential field. 

     Remarks 1. From the equations (9), (10) and (11) we can 

see that there are three very important properties of the 

solutions of the field parameters α and α′: a) parameters α and 

α′ are dimensionless (unitless) field parameters, b) there are 

four solutions of the field parameters α and α′ that reminds us 

to the Dirac’s theory 38  and c) the quantity αα′ is an 

invariant related to the four solutions of the field parameters α 

and α′. 

III. SOLUTION OF THE FIELD PARAMETERS IN 

GRAVITATIONAL FIELD 

   If a particle with the rest mass m0 is in a gravitational field, 

then the potential energy of the particle in that field Ug is 

described by the well-known relation 2,26-30 

  

0
0 0 0g g g

m GM
U m V m A .

r
  =                           (12) 

Here Vg = Ag0 is a scalar potential of the gravitational field, G 

is the gravitational constant, M is a gravitational mass and r is 

a gravitational radius. The four solutions of the field 

parameters α and α′ for the particle in a gravitational field can 

be obtained by the substitution of the potential energy Ug 

from (12) into the general relations in (9):  

 

 

 

2
2 2

1 1 2 1 2 1

3 3 4 3 4 3

2
2 2 2

2

1 1

1 1

0 2

g

g

i f (U ) GM / r c GM / r c ,

, , , ,

, , , ,

GM r c , GM / r c , i f (U ) GM / r c .

      

             

               

     

  

                                                                                        (13) 

The first three lines in equations (13) describe a strong 

gravitational field. If the quadratic term 
2 2 0( GM / rc )   

then the field parameters (13) describe a relatively weak 

gravitational field as we have in our solar system.  

The differences of the field parameters (α-α′) for a particle in 

a gravitational field have the forms: 

  

2

1 1 3 3 1 12 2

2

2 2 4 4 2 22 2

2
2

2
2

GM GM
, ( ) ,

r c r c

GM GM
, ( ) .

r c r c

 
            

 

 
           

 

  

                                                                                         (14) 

   Remarks 2. In the references 24,25,39 it has been shown 

that the field parameters (13) and (14) satisfy the Einstein’s 

field equations with a cosmological constant  = 0. In the 

case of a strong static gravitational field 40-44, the 

quadratic term 
2 2( GM / r c ) in (13) and (14) generates the 

related energy-momentum tensor Tη for the static field. For 

that case, we do not need to add by hand the related 

energy-momentum tensor Tη on the right side of the 

Einstein’s field equations.  

   The second interpretation could be that the quadratic term 
2 2( GM / r c ) generates the cosmological parameter   as a 

function of a gravitational radius 45 for Tη = 0. It has been 
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shown 46 that this solution of   is valid for both Planck’s 

and cosmological scales. In the case of a relatively weak static 

gravitational field, like in our solar system, the field 

parameters (13) satisfy the Einstein’s field equations in a 

vacuum (Tη = 0,  = 0). The general metrics of the 

relativistic alpha field theory 34 has been applied to the 

derivation of dynamic model of nanorobot motion in 

multipotential field 47.  

IV. ENERGY-MOMENTUM TENSOR FOR GRAVITATIONAL 

FIELD 

   The basic problem of this section is to determine the 

energy-momentum tensors for gravitational field in the 

Einstein’s four-dimensional space-time (4D). In that sense, 

we started with the general line element ds2 given by the 

relation (1). Following the well-known procedure 2,26-30, 

this line element can be transformed into the spherical polar 

coordinates in the nondiagonal form  

 2 2 2 2

2 2 2 2 2

ds c dt c dt dr dr

r d r sin d .

       

    
            (15)  

The line element (15) belongs to the well-known form of the 

Riemanns type line element 34-37 

  
   

   

2 2
2 0 0 1 1

00 01 11

2 2
2 3

22 33

2ds g dx g dx dx g dx

g dx g dx .

  

 

         (16) 

Comparing the equations (15) and (16) we obtain the 

coordinates and components of the covariant metric tensor, 

valid for the line element (15): 

0 1 2 3

00 01 10

2 2 2
11 22 33

2

1

dx cdt, dx dr, dx d , dx d ,

( )
g , g g ,

g , g r , g r sin .

     

  
   

   

        (17)  

Starting with the line element (15) we employ, for the 

convenient, the following substitutions: 

  2, / .                                          (18) 

In that case the nondiagonal line element (15) is transformed 

into the new relation 

2 2 2 2

2 2 2 2 2

2ds c dt cdt dr dr

r d r sin d .

     

    
                           (19) 

Using the coordinate system (17), the related covariant metric 

tensor gμη of the line element (19) is presented by the matrix 

form  

2

2 2

0 0

1 0 0

0 0 0

0 0 0

g .
r

r sin



  
 


      
 
  

               (20) 

This tensor is symmetric and has six non-zero elements as we 

expected that should be. The contravariant metric tensor gμη 

of the nondiagonal line element (19), is derived by inversion 

of the covariant one (20) 

2 2

2 2

2

2 2

1 0 0

0 0

0 0 1 0

0 0 0 1

/ ( ) / ( )

/ ( ) / ( )
g .

/ r

/ r sin



        
 
        

     
 
 

 
                                                                                       (21) 

The determinants of the tensors (20) and (21) are given by the 

relations: 

  

 

 

4 2 2

4 2 2

1

det g r sin ,

det g .
r sin





        

 
    

       
 

                     (22) 

   Proposition 1. If the gravitational static field is described 

by the line element (19), then the solution of the Einstein field 

equations gives the energy momentum tensor T of that field 

in the following form 

 

 
 

00 01 10 11 22 33

2

2 2 2

4
1

8




     


T T ,T ,T ,T ,T ,T

GM
, , , ,r ,r sin .

Gr

        (23)   

Here G and M are the gravitational constant and the 

gravitational mass, respectively. 

   Proof of the proposition 1. In order to prove of the 

proposition 1, we can start with the second type of the 

Christoffel symbols of the metric tensors (20) and (21). These 

symbols can be calculated by employing the well-known 

relation 2,26-30 

0 1 2 3
2

, , ,

g
g g g , , , , , , , .



      

             

                                                                                        (24)                              

 Thus, employing (19), (20), (21) and (24), we obtain the 

second type Christoffel symbols of the spherically symmetric 

non-rotating body: 

 

 

0 0 0 0
00 01 10 11

0 0 2 1
22 33 00

1 1 1 1
01 10 11 22

1 2 2 2 2 3 3
33 12 21 33 13 31

2 2

2 2 2

2 2

1 1
2

/ D , / D, / D,

r / D, ( r sin ) / D , / D,

/ D , / D, r / D,

( r sin ) / D, , sin cos , ,
r r

                  

               

              

                 







 3 3 2
23 32 2ctg , D , , , , .

t r t r

   
                

   


                                                                                         (25)  

For a static field, the Christoffel symbols 
0
00 and 

1
00  are 

reduced to the simplest form: 
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   
0 1
00 002 22 2

, , , .
r r

     
        

      
   

                                                                                       (26)  

In a static field, the other Christoffel symbols in (25) are 

remaining unchanged.  

   As it is well known, the determinant of the metric tensor of 

the line element (19) should satisfy the following condition 

2,26-30, 35-37 

 4 2 2 1det g r sin .
                           (27) 

Including the normalization of the radius, r = 1, and the angle 

θ = 90° in (27) we obtain the important relations between the 

parameters ν and λ: 

 

 

2 2

2

1 1

2 2

, ,

' ', '' ' '' .

      

         
                        (28) 

Taking into account the relations (28), the Christoffel 

symbols in (25) and (26) become the only functions of the 

parameter . 

   For calculation of the related components of the 

Riemannian tensor R
 and Ricci tensor R  of the line 

element (19) we can employ the following relations 

2,26-30:  

  
0 1 2 3

, ,R ,

R R R , , , , , , , , .

      
        


  

       

       
             (29)    

Applying the Christoffel symbols (25) to the relations (29) we 

obtain the related Ricci tensor for the static field of the line 

element (19), with the following components: 

 

 

2 2
00

2
01 10

2 2
11 22

2 2
33

2
1

2

2
2

2

'
R ' '' ,

r

'
R R ' '' ,

r

'
R ' '' , R ' r ,

r

R ' r sin .

 
        

 

 
       

 

 
         
 

    

        (30) 

The other components of the Ricci tensor are equal to zero. 

The related Ricci scalar for the static field is determined by 

the equation 

   2
2

2

0 1 2 3

2 2
2 2

R g R , , , , , ,

' '
R ' '' .

r r r


   

    
             

        (31) 

   In order to calculate the energy-momentum tensor Tη for 

the static field, one should employ Ricci tensor (30), Ricci 

scalar (31) and the Einstein’s field equations 2,26-30 

without a cosmological constant ( = 0) 

4

1 8
0 1 2 3

2

G
R g R kT , k , , , , , .

c
  


        (32) 

Here G is the Newton’s gravitational constant, c is the speed 

of the light in a vacuum and Tη is the energy-momentum 

tensor. Thus, employing the Einstein’s field equations (32) 

we obtain the following relations for calculation of the 

components of the energy-momentum tensor Tμη: 

 

   

 

2 2
2

00 01 102 2

2
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11 222

2 2 2
33 4
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1

2 8

' '
kT , kT kT ,

r rr r

' '
kT , kT r ' '' ,

r rr

' G
kT r sin ' '' , k .

r c

      
             

   

    
               

  
        

 

    

                                                                                       (33) 

For calculation of the components of the energy-momentum 

tensor, Tμη, by the relations (33) we should know the 

parameter   and its derivations '  and ''  for the related 

static field. Parameter   is defined by (18) as the function of 

the field parameters α and α′ 

   2 2 1/ / , .                       (34) 

Applying the solution of the field parameters α and α′ in a 

gravitational field (13,14) to the relation (34) we obtain the 

two solutions of the parameter   in a gravitational static 

field 

 

2

2 2

2  
      

 


GM GM

.
r c r c

                                         (35) 

Now, one can calculate the all components needed for 

determination of the energy-momentum tensor Tμη in a static 

gravitational field: 

2

2 2 2 2 2 2 2

2 2 2 2 2

2 2
2

3 2 2 2 2 3 2 2 2

2

2

2 2
2

     
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      

   
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    
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GM GM GM GM GM
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GM GM GM
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r c r c r c
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r r c r c r r c r c
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2
3
 

      
 

GM GM
'' ' ' .

r c r c

  

                                                                                        (36) 

Applying the relations (36) to the equations (31) and (33) we 

obtain the components of the energy-momentum tensor and 

Ricci scalar valid for the static gravitational field: 
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r c c

GM GM
kT , kT r ,
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r c
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GM
.

r c r c

           (37) 

From the previous relations we can see that the Ricci scalar is 

equal to zero. Finally, included parameter k into the relations 

(37), we obtain the components of the energy-momentum 

tensor of the static gravitational field 

 

 

00 01 10 11 22 33

2

2 2 2

4
1

8

 

      
  

T T ,T ,T ,T ,T ,T

GM
, , , ,r ,r sin .

Gr

       (38) 

Because the relation (38) is equal to the relation (23), the 

proof of the proposition 1 is finished. 

V. PROOFS THAT RAF THEORY SATISFIES REQUIRED 

PROPERTIES OF ENERGY-MOMENTUM TENSOR IN 

GRAVITATIONAL FIELD 

     As it is well known from the quantum relativistic field 

theories of the other physical interactions, the energy 

momentum tensor (EMT) of massless boson field obeys the 

following three crucial conditions 10: 1) symmetry, 

T T  ; 2) positive energy density for static and free field, 

00 0T  ; and 3) zero trace,
 

0T  .  

     It is very important to prove if the EMT in RAF theory 

also obeys the mentioned three crucial conditions. In order to 

prove this, we started with the matrix form of EMT in RAF 

theory (38) 

 
2

2 4

2 2

0 0

1 0 0

0 0 0 8

0 0 0

GM
T .

r Gr

r sin



   
 
 
       
 
       (39)

 

Following (39) one can see that the matrix in (39) has the 

symmetric form. This means that EMT in (39) satisfies the 

first crucial condition: 1) symmetry, T T  .  

In order to prove the condition of positive energy density for 

static field, one can start with the element 00T of the EMT in 

(39) and with the relations (28) and (35): 
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                                                                                       (40) 

where 1 . From the relations in (40) we can see that 

00T is positive or equal to zero: 

00 002 2
0 0

GM GM
r T , r T .

c c
    >

           

(41)  

Thus, one can say that 00T can not be negative quantity.  

Following the relations (40) and (41) we can see that EMT for 

gravitational static field satisfies the second crucial condition: 

2) positive energy density for static field, 00 0T  if   

2r GM / c . In the case that
2r GM / c  , the energy 

density for static and free field is equal to zero, 00 0T  . 

Thus, the energy density of EMT for a static gravitational 

field in RAF theory is non-negative item 00 0T .  

Remarks 3. In RAF theory of the gravitational static field, the 

situation at 
2r GM / c corresponds to the point where the 

acceleration is equal to zero and free fall velocity is maximal 

and equal to the speed of the light in vacuum c 23,24,25. At 

the same point potential energy is zero and kinetic energy is 

maximal. Further, at this point negative gravitational force is 

changing into the positive one and vice versa. This includes 

possibility that the gravitational force can be both attractive 

(in the region
2

c cr r , r GM / c < < ) and repulsive (in the 

region
 

22min c minr r r , r GM / c< ). At the minimal 

radius minr , repulsive force is maximal. 

     In order to prove the third crucial condition of EMT: 3) the 

zero trace,
 

0T  , we have to calculate the trace of the EMT 

in (39): 

 
 

2

2

4

2

2 2
8

1 0

GM
T g T ,

Gr

T .



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  

     

                (42)  

In the previous relations g
is contravariant metric tensor 

(21) of a gravitational static field and T is the related 

covariant energy-momentum tensor (39). The relation 
2 1    is derived from the condition that the determinant 

of the metric tensor of the line element (19) should satisfy the 

relations (27) and (28).  

     From the previous consideration we can derive the 

following conclusion. In RAF theory the energy momentum 

tensor (EMT) of the gravitational static field obeys the 

following three crucial conditions: 1) symmetry, T T  ; 

2) positive or null energy density for static field, 00 0T  and 

3) zero trace,
 

0T  . Here the condition 2) can be change 

into the related new condition: 2) non-negative energy density 
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for static field, 00 0T  . In the condition 2) of EMT the 

non-negative energy density means that the energy density is 

positive, but at the radius cr is equal to zero. This is the 

crucial difference between field gravity approach ( 00 0T  ) 

and RAF theory of gravitational static field ( 00 0T  ). 

VI. CONCLUSION 

  In this paper we consider the properties of the 

energy-momentum tensor (EMT) in a static gravitational 

field. This tensor is derived in the Relativistic Alpha Field 

Theory (RAFT). It is shown that the EMT of gravitational 

static field obeys the following properties: 1) the symmetry, 

2) the non-negative energy density and 3) zero trace of EMT. 

Here the non-negative energy density means that the energy 

density is positive, but at the radius rc = GM/c2 is equal to 

zero. This radius corresponds to the point where the 

acceleration is equal to zero because negative acceleration is 

changing into the positive one and vice versa. This is the 

crucial difference between RAF theory of gravitational static 

field and field gravity approach, where energy density is 

positive and without null point. Further it is shown that the 

gravity force is attractive (in the region rc < r < ∞) and 

repulsive (in the region rmin ≤ r < rc , where rmin=GM/2c2). At 

the minimal radius rmin, repulsive force is maximal. 
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