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 

Abstract— A graphical interpretation of the 

time-independent Schrödinger equation in the Cartesian 

coordinate system for the explicitly set wave function of the 

ground state and selected excited states of the hydrogen has 

been presented. It was shown that the equation left-sidedly 

multiplied by the function ψ allows to find its didactic 

connection with the course of the beam of light emitted by the 

hydrogen atom in the measuring system of the spectroscope 

equipped with a prism. 

 
Index Terms—Cartesian coordinates, prism, Schrödinger 

equation, straight line. 

 

I. INTRODUCTION 

The inspiration to write the present paper was the remark 

made in the book [1], which is as follows: “We are so used to 

simple proportionality that we are liable to underrate the 

far-reaching consequences of this simple law.”. Although this 

sentence refers to some phenomena occurring in the cells of 

living organisms, we will show below that it also applies to 

the time-independent Schrödinger equation (hereinafter 

abbreviated as TISE). Proportionality in the considered 

equation is limited only to special examples of the so-called 

own functions, yet these are fundamental examples. We will 

also demonstrate that the proportionality analysis allows to 

find a connection between a TISE geometric image and a 

spectroscopic experiment in which a beam of light from an 

atom that emits radiation is split into components by means 

of a prism.  

Until now, the TISE description in teaching literature has 

focused on numerical solutions of one-dimensional TISE 

[ 2 ],[ 3 ]. Calculation of adiabatic approximation of TISE 

solutions [ 4 ], application of Mathematica computer 

application  to obtain some solutions of TISE [5],[6]. WKB 

approximation in the TISE solution [7]. PIB (particle in box) 

solution [8], the influence of the configuration interaction 

(CA) method on the TISE solutions [9]. TISE solutions for 

two-atom oscillators using linear algebra methods [10]. TISE 

solutions with the use of anharmonic potentials [11]. The 

graphic side of TISE was discussed in relation to the 

connection of angular momentum of an electron and other 

quantum numbers [12]. 

 

II. THE SCHRÖDINGER EQUATION IN THE PARAMETRIC 

CARTESIAN COORDINATE SYSTEM 

The time independent Schrödinger equation is recorded in 

the commonly known formula (1): 
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Ĥ E   (1) 

  

The external form of (1) may suggest that it is an advanced 

analogue of the ordinary straight line equation y a x  , 

which is an equation with a angular coefficient of a straight 

line passing through the origin of the Cartesian coordinate 

system. However, in the case of (1) we can understand that all 

the values ψ should be set aside on the x-axis, while Ĥ ones 

should be set on the y-axis, as far as both the Hamiltonian and 

function ψ are given explicitly. With this assumption, we 

would deal with a parametric coordinate system, where the 

parameters would be all the independent variables of ψ and 

possible constant parameters on which the function ψ could 

depend. In such a system, the value E would act as the 

angular coefficient of a certain straight line, which should 

also pass through the origin of this system. We will check if 

this assumption for a few selected forms of (1). 

Let us consider a hydrogen atom with the 

Born-Oppenheimer approximation and with the infinitely 

heavy nucleus. In this arrangement, the Hamilton operator for 

the hydrogen atom takes the form of (2) in atomic units: 
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Let us arbitrarily assume the form of a wave function 𝜓, 

which is a Q-class function and may be intended to describe 

some state of a hydrogen atom. Let this function be 
cre  [13], where c is a certain non-negative constant (so 

called a vartiational constant), while r is the radius vector of 

the electron. Additionally, the proton is placed at the origin of 

the coordinate system. After these assumptions, TISE will 

transform to the following form (3): 
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Drawing a line course in a parametric coordinate system 

will be possible after carrying out the Hamiltonian operation 

on the selected function. For this purpose, the sum of the 

second derivatives of the selected function ψ have to be 

calculated, remembering that the radius vector is in the 

following form: 2 2 2r x y z   . It is convenient to carry 

out the differentiation procedure using one of the symbolic or 

on-line calculation algorithms available on websites designed 

for such calculations. After carrying out the differentiation 

and ordering of variables, e.g. such a form of TISE is 

obtained (4): 
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It is obvious that we are now able to divide both sides of 

(4) by 
cre

and obtain the expression (5) for energy as a 

function of two variables, c and r: 
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It should be noted that only if c = 1, the energy value is a 

constant one and it is equal to E = -0.5. In fact, it is the energy 

of the ground state of the hydrogen atom, expressed in the 

atomic unit (hartree). For this value of c the energy of the 

system is constant and all the possible electron positions in 

the space surrounding the nucleus. 

However, our aim is to present (4) in the Cartesian 

coordinate system. This can be done by selecting one of the 

available websites with online procedures to draw diagrams 

of parametric equations and apply (4) directly for the selected 

value c with the parameter r. Instead of this, we used Visual 

Basic programming language [14] (see Appendix, Procedure 

1) for this purpose. Fig. 1 shows the eq. (4) curves plotted for 

three arbitrarily chosen values of c (0.2, 1.0 and 1.8) with  r 

used as a parameter within range from 0.01 to 15: 

 

 
Fig. 1. MS Excel chart showing eq. (5) plots for three 

different values of the coefficient c. 

 

In reality, a straight line is formed in the system only for 

values 𝑐 = 1. For other values, certain curves are formed. 

This always happens when the function ψ it is not an 

eigenfunction of the Hamiltonian (obviously when 1c   in 

this case). 

We will consider one more example of the function ψ, 

which becomes negative for some values of the radius vector 

r and additionally some values of this function depend on the 

angles in the spherical coordinate system. Let this be a 

function (6): 

 

2 sin( )cos( ) crcr e      (6) 

 

which is an eigenfunction corresponding to the unnormalized 

orbital 2px only when c = 0.5. The Hamiltonian operation on 

this function gives  (7): 
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Using (7), the full version of the time-independent 

Schödinger equation takes the form of (8): 
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As (8) is dependent not only on r and c but additionally on 

the angles and , this fact should be taken into account 

when constructing a program for drawing a straight line. This 

means the need to introduce additional two loops to change 

the characteristic angles across their function domain (see 

appendix).   

The function 2px  has negative values for a certain array r, 

θ and ϕ. This fact is manifested by the appearance of the 

straight line arm in the second quadrant of the parametric 

coordinate system (Fig. 2, Appendix, Procedure 2): 

 

 
Figure 2. An Excel chart showing eq. (8) for c = 0.5. 

 

Such simple figures can be made for each eigenfunction of 

the selected quantum state of the hydrogen atom. For training 

purposes, the results of the Hamiltonian operation on 

functions 2s, 2py, 2pz and all functions (unnormalized 

orbitals) of the M shell are given in the appendix. They can be 

used for the exercise of examining for which values c a 

straight line is formed in the coordinate system ( ˆ, H  ) . 

It should be noted that in a three-dimensional Cartesian 

coordinate system, e.g. ( ˆ, ,r H  ), the presented straight 

lines are only projections of spatial curves on the plane 

ˆ, H  . These curves have asymptotes on the axis r for 

r    regardless of the parameter value c.  

 

III. CONNECTION OF THE PARAMETRIC COORDINATE 

SYSTEM WITH THE REAL SPECTROSCOPIC EXPERIMENT 

The element relevant for didactics of quantum chemistry 

appears only when TISE is left-sidedly multiplied by the 

function ψ (9): 
2Ĥ E    (9) 

We will use this last form to create a Cartesian coordinates 

with the axes defined as (
2 ˆ, H   ). It turns out that this 
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procedure causes that straight line points are located only in 

the 4th quadrant of the coordinate system for both positive 

and negative values for an eigenfunction of the adopted 

Hamiltonian (Fig. 3, Appendix, Procedure 3): 

 

 
Figure 3. The course of a straight line in a coordinate 

system (
2 ˆ, H   ) for ψ = 2px. 

 

This property causes that we can identify the behaviour of 

such a straight line with the geometrical system of a prism 

used e.g. in a UV/Vis spectrophotometer in which takes place 

the diffraction of radiation emitted, e.g. by the hydrogen 

atom. Let us suppose we throw a collimated light beam 

corresponding, e.g. to the Balmer series boundary, whose 

energy is equal to -3.40 eV (410 nm or -0.12495 hartree). Let 

us additionally suppose that this beam falls on the prism at 

the angle 𝛽 selected by us in such a way that the tangent of 

the deflection angle 𝛼 is numerically equal to the energy in 

the selected physical unit. This situation is presented in Fig. 

4: 

 

 
Fig. 4. A prism with a beam of light course emitted by a H 

source in the coordinate system (
2 ˆ, H   ). 

 

In such a system, we can assign the edge a of the prism 

with the role of the axis ψ2, which adopts the maximum value 

(i.e. for ψ2=0) at the point of contact with the perpendicular 

edge b and at the same time where the light beam leaves the 

prism. On the other hand, the vertical edge Ĥ   is routed 

perpendicular to the axis ψ2. The origin of the coordinate 

system is placed at the point where the collimated light beam 

falls into the prism. It can be seen from the Fig. 3 that such a 

connection concerns the course of the beam of light only 

inside the prism. The angular coefficient of such a line still 

corresponds to the energy of the selected quantum state of the 

hydrogen atom. It can be seen that the selection of any trial 

function which is not the own function of the chosen 

Hamiltonian (e.g. by changing the value c) causes the system 

to obtain a curve that has an asymptote for the maximum 

value ψ^2. It can be said that the trial functions, which are not 

eigenfunctions, give such a course of the beam of light inside 

the prism that it does not come out in the expected place. This 

means that trial functions that are not self-functions are 

nonphysical in the sense that they in a prism, they behave in a 

rather unusual way for a light beam, and that obtaining solid 

values (independent of the radius vector and angles) of 

quantum energy values requires additional mathematical 

operations, e.g. the averaging process involving the 

integration of (8) in the entire electron position variability 

area. 

It should be noted that more than one radius from excited 

hydrogen atom states can be placed in Figure 4. To make this 

possible, the functions ψ should be normalised in such a way 

that their maximum values are  the same (the normalisation 

procedure was carried out in the case of Figure 3 – see 

supplement). This is not a normalisation characteristic for 

orbitals. There it is required that the integral of the square of 

the wave function is equal to one. Here, it is enough for the 

maximum value of all selected functions to be e.g. 1. 

 

APPENDIX 

Main symbols: 

a – coefficient at the Laplacian in atomic units 

b – coefficient at the potential in atomic units 

c – variational variable 

r – electron radius vector 

psi – ψ, wave function variable 

Hpsi – Ĥ , function as the result of the Hamiltonian action 

on the function ψ. 

 

All the procedures are written in MS Visual Basic for 

Excel. 

 

Procedure 1.  

‘Calculation of ˆ, H   value pairs for 1s orbital in 

‘atomic units 

 

Sub stright1s() 

j = 1 

For c = 0.2 To 1.8 Step 0.8 

 For r = 0.01 To 15 Step 0.01 

   psi = Exp(-c * r) 

   Hpsi = (-1 / 2 * c * c + (c - 1) / r) * psi 

   Cells(j, 1) = psi 

   Cells(j, 2) = Hpsi 

   j = j + 1 

 Next r 

Next c 

End Sub 

 

 

 

Procedure 2.  
‘Calculation of 𝜓,𝐻 𝜓 value pairs for ‘unnormalized 
2px orbital in atomic units 

 



 

Time-Independent Schrödinger Equation as a Straight Line Equation in Cartesian Coordinates 

 

                                                                                       24                                                                                www.ijntr.org 

Sub stright2px() 

a = 0.5: b = 1: j = 1: c = 0.5 

Pi = 3.1415 

For r = 0.01 To 10 Step 0.1 

 For phi = 0 To Pi Step 0.4 

  For theta = 0 To 2 * Pi Step 0.4 

    s1 = Exp(-c * r) 

    psi = 2 * c * r * Sin(theta) * Cos(phi) * s1 

‘The two lines below should be written in one row in 

‘the VB for Excel 

Hpsi = -2*c *(a*c*(c*r-4)+b)*Sin(theta)* 

Cos(phi)*s1 

    Cells(j, 1) = psi 

    Cells(j, 2) = Hpsi 

    j = j + 1 

  Next theta 

 Next phi 

Next r 

End Sub 

 

Procedure 3. 

 
‘Plotting of a straight line for normalized 2px 

‘orbital in a prism system 

 

Sub prism2px() 

j = 1: c = 0.5 

Pi = 3.1415 

N = 1 / (2 * Exp(-1)) 'normalization constant 

For r = 0.1 To 5 Step 0.2 

  For phi = 0.1 To Pi Step 0.2 

    For theta = 0.1 To 2 * Pi Step 0.2 

      s1 = Exp(-c * r) 

      psi = N*r*Sin(theta)*Cos(phi)*s1 

      Hpsi = -2*N*c*(c/2*(c*r-4)+1)* 

      Sin(theta)*Cos(phi)*s1 

      Cells(j, 1) = psi * psi 

      Cells(j, 2) = psi * Hpsi 

      j = j + 1 

    Next theta 

  Next phi 

Next r 

End Sub 
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