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NumericalSimulation oflnterfacial Waves in Twc
Layers oflmmiscible Huids
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the constitutiveequation of viscoelastic tensor are equations

Abstract This work is dedicated to the numerical for describing viscoelastic fluid in fluid mechanics, which
simulation of two-phase flow (gas/liquid) stratified between two  can reflect the basic mechanics law of viscoelastic fluid flow.
parallel planes andinclined relative to the horizontgl. In this |15 effectis tensile property anelasticityrelated tomaterial.
context, we have chosen to use a code for solving both thepccqding to the detailed record of Patankar [1], the above
Navier-Stokes equations and the constitutive equations of methods have been used to solve the problem of fluid flow
viscoelastic fluid with finite volume (Gilflow) corresponding to a .
single phase flow of viscdastic fluid confined between two and _heat tran_sfer._Therg are mr;_my mathematical models of
horizontal plane walls. The twophase flow model was here nonlinear partial diffenetial equations that characterize the
implemented successfully, by application of the "Volume of rheological phenomena of viscoelastic fluid, which provide a
Fluid" method (VOF). The transport of the interface is solved reference solution for the present and future numerical
by using the transport equation of the VOFfunction. Both  calculation and application.
methods: Hirt-VOF and PLIC-VOF are tested for a twephase
flow in an unsteady stratified flow regime (gas/liquid). To

illustrate this numerical simulation, the configuration (gas /
o e II. GENERALEXPRESSIONOFMOTION EQUATION
liquid) stratified is here presented. AND VISCOELASTICTENSOR

First, the motion equation of viscoelastic fluid and its
Index Term$ Immiscible Fuids; Interfacial Waves; partial differential equation of general expression of
Numerical Simulation viscoelastic tensor are introduced

A. Motion Equation
d The description of complex fluid flow is determined by the

Dynamics(CFD)is becoming an important debugging tool a§°”s?“’?‘“°” equ_atlon Of_ mass and reatom as well as th?

well as physical experiments. It is more flexible, easier tgonstltunveequatlon of ylscoglastlc tensor. Thesg equapons

implement, especiallyith lower cost features, to completecan deal with two d|mer_15|ona_l and three d|m¢n5|onal

difficult experiments, and even to reproduce the situation th IEOble.mS' In the case of Wmmens'?nal flow, the. motion of

is not possible in the laboratory. i equect can be regardeq as sgmhmte in one dimension
The viscoelastic statef polymer materials may lead to that issay the flow hgs a fixed thicknets )

complex flow. The instability of flow has a very important N Cartesian coordinat¢®x, Oy) , the mass conseation

influence on its application. Because of the factors such eguationof projectionalong the axi€an be written as:

direct aeation, small depth of water, amdinimal thickness £+l‘ ) a

of the boundary layer, it is difficult to carry out direct X M

measurement in situ in physical experimeblising the finite

volume method, acode corresponding tthe viscoelastic

fluid between two plangvalls can solve theéNavierStokes

|. INTRODUCTION
The numerical simulation of Computational Flui

The momentum conserian equation of projectioralong
the axis can be written as:

5 < 2 21 2| R -
equation andhe viscoelastic fluid constitutivequation it ,ﬁwﬂ v 8=£ Mg LZJ ”‘L} g;‘% My 8 gsin+ g (2)
cancontrolbetterthe envionment, analyze the procesarry ’ y”f H f‘:x 2“ ¢ R fu
out the numerical simulation movarefully, and reveal the &,y M o W8 _ Pr, 2 Vi ™V 8T, %y 0 (0o 4 (3
viscoelastic phenomemalated to the polymer materigow. cH MoOWME R W s Xy S

Finite volume method is a numerieakthod commonly used o _ _ _
in hydrodynamicscomputatiom It has the advantages of The ConStltUtlveequatlon of the viscoelastic tensor along
solving geometric problems ammbmputing efficiency The the axis can be written as follows:

finite volume methoddiscrete NavieStckes equation and 1 +/8Ta oMy B 95 AW, U 0 5 W @
¢ H K s ¢ xl oy = X M
LT U8 Ty, 0, AwV N_ 8 Wi
T 42 2w g FWV - Mg f pot 5
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Numerical Simulation of Interfacial Waves in Two Layers of Immiscible Fluids

Here r is the fluid densitylU representshe velocity along Tabe 1 Multi fluid model
the axisX,V representshie velocity along the axiy, P is h, h e P% n / Fluid model
the pressuref, isthe dynamic viscosity coefficient of the 0 N 0 0 1 0 Newtonian
Newtorian fluid, u, =/i is the kinematic viscosity— - 0 0 - 0 Bird-Carreau
' r - - 0 0 1 - Oldroyd-B

coefficient of the Newtdan fluid, #, is the dynamic| S I R i L#Ap&ﬁgf?dgﬁd
viscosity coefficient of the viscoelastic fluid (hon Newito), _ N 0 0 _ N White-Metzner
/ is the relaxation time of the viscoelastic fluid, afidis - - 0 0 1 ~ | PhanThienTanner
the composition ofhe viscoelastic tension. (PPT)

- - - - 1 - PPT(general)

So far, the completgystemof equationsas been showin

B. General Expression of Viscoelastic Tensor this paper. In order to appthe equatios effectively, it is

The total stress tensor Ciuﬁhyi:s expressed necessary to understand the algorithm correctly.
s= Pl Z24/DU) T+ (7
I is selftensor,uis velocity vector andD is deformation . NUMERICAL PROCESSING@®FNAVIER-STOKES
rate tensor. It can be expressed as follows: AND VISCOELASTICTENSOREQUATIONS
— o— =T ~
D= Egé + 8 (8 Subsequently, the finite volume method is used to discretize
2¢ - the system of equations.

= =T
Here L= E? is the velocity gradient,L is its
transposition
The viscoelastic tensor must satisfy the general form
equation [2]:

The conservation equation is integrated on a control volume,
and then the volume integral is transformed to the surface
integral by Gauss theorem. All physical scalars should be
processed at the center oéttontrol volume, and the velocity

o is at the centesf the control volume, fiorms staggered grids.
T T e The time discretizativ of the motion equation is
(M T+/T 2 4D © semiexplicit. Using a code (Gilflow), the method is derived

oS

Here R from Hirt-Nichols [3].
= == =T=
T:d—T -TM M T (a0
dt _ A. Space Discretization
In general it is a derivatveM =L -xD represents  All physical scalar equations can be written as:
correction of velocity gradient in whicki [0,1] . It s “—+—“(ujf) I(IJ/) s, (13
observed thatx =0 correspond to the upper convection H - X
derivative, which is usually called the Oldregdfluid. The vector equation is projected onto a fixed coordinate

Other physical parameters of the gatiged viscoelastic system, and the transport equatibthe physical scalar along
model are:/ is relaxation time /, is polymer viscosity (non the axis can be obtained.

Newtorian fluid), it can be described by Bu@arreau In the Cartesian coordinate systg@x, Oy) , the following

method . table shows the different termbthe physical scalar transport
2,2 equation.
h = Qw g (11, Table 2 Different term of transport equation of gigal
1+ Bg*H)+nrz scalar

Y =2

g=\2{D} refers to he generalized shear rat¢¥(the | Equation f J, S
trace of matrix),Gis the time scalenis the rheological| Conservation 1 0 0
coefficient and/, is the plymer viscosity at zero shear ratg of mass

Thedamping function is defined as: Velocity U | U Lpg, . g 1r | OSING

= e = conservation r W
(M (4D @2 of
P momentum

Here eis a dimensionless parameter for characterizing {thgelocity \/ \Vi 1o, . WV 1o - gcosy
elongational viscosity model. conservation r A guxj rY

This model provides great flexibility, and can bepf
transformed into multiple modelsytknowing the specific | momentum
valuesof certain physical parametefhe following tables| viscoelastic | T 0 MU
provide some examples, which are usually encountered in fa@sorT XX W
literature. * o T

o
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Vi i v
scoelastic T, oW
tensorTyy (D
2n T,
+-1p X
Y
Viscoelastic T, 18 T+ %VT“
tensorTXy (DS !
h T,
+-1D -2
[

We consider that a boundar of control volumaN is
1}
regular and will not change with tim@& is the outward

normal vector ofA, ds is element of the surfacA.

We can get the general transport equation by integrating
on the control volume.

i

w

Applying the Gauss theorenmé@the replacement of the

w

h
W+ gnd w

h
+(Rd Vs=d FW

time derivative, the entire equation can be rewritten as:

U h h gh h
AW+ gnd s+ 3T s=5 d LS)

This equation sums up the method of finite volume of
physicalquantity/ . It can be used as the basis for spatial e v

discretization of finite volume method.

ilxp

e

D,

e E dv

“w @

Fig.1 U, ; central grid

[ =3

e

+LJ

dvp

2

/41,51

“w @

A standard computing grid is mered on the pressure.
Figl and Fig2 show the computing gridcentered

(U;;,V,, ) respectively. The subscriptdescribes the axis

v/
N{‘Xl_g(‘ll

Fig.2V, ; central grid
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ISSN: 24544116 Volume-4, Issue5, May 2018 Pages 891

from the West (W) tothe East (E), and the subscript
describes from the axis frothe South (S)d the North (N),

so the grid inthis version of the code is established in the
Cartesian coordinates.

o

dy

dyp

se——F1—— >

w @
[

Fig.3 Staggered grid of velocity and pressure

N
@
Vi
n
. j)
pE-L]) £
Let-Lp =T 07 )| Ui
b —
< e
s )
5
\ (. j-1)
T,.G-1j-1) TG
9 [ ]
S
Fig.4 T,y ;, central grid

In Fig.3, it can be observed that the computational grids
centered on the velocity afuessure isnterlaced with each
other. In Fig4, it can beobserved that the two normal
componenbf the viscoelastic tesor are in the pssure node,
and the shear component of the viscoelastisoris located
in the center of the surface of the velocity drfore using
the momentum equation. Each momentum equation is solved
in the conputational grid centered on its reesponding
velocity.

So the momentum equation of projection along the axis
(Ox, Oy) can be written as:

WL SCONV(U,) DIFFU,) 4P 2P,)  savas)

1

\VAR
W% +CONV(Y,) “DIFF(Y,) =Ld>()(%PJ =B ar.

gosy

CONV(LJ.,j):dm%(u+1,,»+u,»)ui+}J -dx)%(uﬂ, Yo,

RO (Vo A, U, S LY, WU, a8

' 2

CONVIY, )= dyif ] (Vo + Uy DV, - BN LY 4 )V,

MV

i

LSV, AV L LY, as)

2
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DIFF U, ))=dy( )Lty £y - dY(DL bl )

-l;y(l i)

Py DLy LI gy LD ) LD (20)
DIFF(\/\J)_dX(i)LU froiy DOOL o4y iy HVHD L oty YR D Loy i
T T,
SAIL0D gy Toern dyMLLj” dyig ) LM, (1)
¢ _Ui+1,j B Ui j i -lej, 1
xx(i, ) ; ;;U.D
dx(i) dyp( )
_Vi,'+1' V| _V' 'v-lj, -
L= Jd — hii = Jd (22
y( ) Q)

AXP)L o5 & X)L ;¢

B. Time Discretization
(n+1) is the index of the timé, (n) is the index of the
time previoust - . The derivative of the physical scalar

f attime n can be written:
N A A
W b 2 th

The time discretization takes first order amdydhe first
termis retained

B HD (34

P

Dt
The time discretization dhe scalar equation is expliclt

For non Newtonian fluids, stoelastic tensors can becan be determined that the time discretization of the
noticedin the diffusion terms of momentum equation. If theviscoelastic tensor constitutive equation is explisttile the

expression of viscoelastitensor is omitted,
Newtorian fluid.

The constitutiveequation of the viscoedtic tensor can also

be written as:

M, A, Toci
Wf HCONV(Tyij)) = MWy Ty Feeiy Toetin) (27VVD«<>(IJ) #) (23)
My, A, Ty
w ﬁl( 2 HCONV( ) = Wy Ty Aot Toeai ) (27VVDMH) W(/”) (24)
“Txycs(u)
WT +CONV( -l;ycei i J)) ° (ML( ) -Eycs{ i) @?ce i Ty!u ) x}‘chew ) TXk il y!/f) che(w))
h, T
= @, =) @5
-1 + + + 26
tyxa{l J)_Z( ‘/‘xce i y[ceﬁ, ) y><0€ LAE) yxce;Jl)) ( )
Lo )= 4( beein® when) *owdin i el (27)
D 1 28
xy(i i)~ 2 xyCdn ] §x0<{ i D) (

is obtained byl ..at the nod®f

xyce

The sheacomponent,,

pressure.
1
Txya,J):Z(Txyca(tj) +Tocein ) Tocein iy Faeesjn) (29)
CONV(-EX(I,J)): dj ) Lu+l,j -)I(—x(i+} - dY) Lul xx(i j‘
)
LV T LY, T @
|,J+E XL -
CONV(T., d)=dy }LU. T -dg LY T
(-l;y(hl)) Y) U+1,J yy(i+%,j) Y) UJ yy(i ~21,i)
PO T o SO, T, (81
CONV('l;ycem)) d% Ui Ty dY) SO iy
+A()LV,.T -dx) LV,J @)
) xycd j - )
Upwind scheme cawrite:
1
f.== +
e 5 (£ +oN
g f, if U,>0
u.f,=u,§ ° = ¢ (3¢
i- fE if Ue<0

The upvind scheme is the simplesbnvectiveform,

which can be quickly and roughly calculated. It can make a
start attempt dr higher precision calcation, and then

it becomes time discretizabn of the motion egation is semexplicit.

C. Linear System

According to the discrete expression of the velocity
momentum equation, we express the time velogityime
(n+1) as the function of theressureat time(n+1), and

then bring these values into the continuity equation. This
method can give priority tocalculate the pressure at
time(n+1), and then calculate the velocitytane(n+1).

The velocity and pressure fielthtained by this method must
follow the conservatiomf momentum and masjuations
Through the transformation, we can get the following
relation

AV\{, i) I:,Hlll)-" AEJ) E’ﬂ{; ) +ANJ, )IEBE +AI§ )IIPP;) +

-(AW +AE AN A PP r(=SU, SM f 8V SV
Wi = ) AR ) :M
dxp(i) ' dxd i+1)
o dx(i) _ dx(i)
L =——2—  AS,
T ayp+ I Taye)
su,“;h CONV(u'j)?I- DIFF(Y" ) asing
’ Dt Ldxp(i)dy( )
n NV(U",. DIFF(U" .
sy, =0 0 o) * DU ) ging
Dt Ldxp(i A)dy( ))
_ V' CONVY!)+ DIFRV))
SV = Dt Ldx(i)dyp( ] o7
S\, = Vil CONV(V',,)+ DIFF(V] ) - gcosg
' Dt Ldx(i)dyp( j+1)

Therefore, we must solve onerm of linear system
A% ‘=g at everytime step Because of the orthogonal

symmetricmatrix A, the CHOLESKY method can be used to
solve this linear system.

The matrix A can be decomposéito:

A=M3 M @3

—T

establish a higher order folleup shieme. In this case, the Here M is the lower triangulation matrlx whid¥l is its

upwind scheme is used to deal with the convective term.

v/
NF.(‘.leg(,‘ll

=1gh
transposition So we calculat(Mg( B andM Y=X at

every time stepthat is tosolve its dscent algorithm and
remount
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IV. A WLumE OFF L U | (1D@F) METHOD FOR CAPTURE

INTERFACE
When wediscuss thewio fluids flow, we should pay close Vi

attention to the computation of frearface and interfacén -

the previous section, we introduce the iompressible

NavierStokes equation, withouncluding the motion of U, by 1

L1
i

interface. However, there are many problems in numerical
prediction of interfacial movement in continuous media, so it i
is difficult to simulatethat Therefore, thevolume of fluid
method (VOF) is proposed, which is a known idea of v
capturing interfaces in Eulerian coordinates. This method of W
capturing interfaces does not need to deal with geometric i
grids, and can be applied to complex topological interfaces.
Therefore, VOF is a practical abfor simulating the free Fig.6 C function position

surface flow and the location of the interface is determined

by VOF function. Since the first publication of VOF method ag shown in Figp, if 0<C,, < itrepresents the interface
proposedby Hirt and Nichols [3], in order to simulate more

accurately, many scholars have made variattenpts. We between gas phase and ||qU|d phasdz;if=1 it represents
considertwo methods of HivOF and RIC-VOF to solve
the problem of théransport equatioof this function.

liquid phase; if C;;=0 it represents gas phasg ; is

located at the point of presstn the grid (Fig6), the finite
. volume method described in the previous section is used to
A. VOF Function solve the NavieStockes equation, and a linear system
Modelingof two layers of immiscibléluid flow. A binary z%r”l _ B'can still be obtained

function C related to space and tineintroduced: =
Now the coefficient of pressure matriA is not only

I L,
FC(?](’ §=1 ifx I fluid 1 (37 related to the mesh size, but also to¢hange of densitin
1C(x =0, ifxI i fluid 2 the grid, which is obtained through the calculatioriVGiF
function. At every time steqthe coefficient of the matrix will
C(X,t) is a function, which represents the location of ge readjusted with the solution of the transpqutagion.

fluid compared t@nother fluid inthe evolution of timeThe

change of functiorC is directly related to the moventeof pC, @ . qJJ
the interface. It is connected with density and viscosity —l "‘U — 'Vij —- € (40
i Mt K TYH
through I|near varlatlon Iaw
/’(X t)= {C(X, t) + (1 €(% t)) (38 B. Numerical Processing of VOF Function Transport
Equation
”(X = {@(X’t) + &1‘ €(xY (39, When Cij satisfies the above transport equation, the
spatial discretization of the equation is adopted by the finite
volume method, and théme discretization adopts the
0.3 0.01 0 CrankNicolson scheme, which has two order precision. Even
_“\ so, the discretization of the transport equation is still very
N difficult, because the C function must maintain a certain
volume fraction between the 0 antbdundarythe transition
1.0 0.6 001 regions for the two fluids must be fined as much as possible.
These two attributes require an conventional
A "compression" schem® ensure its characteristics. Below,
1.0 10 03 we introduce thelefinition and processingf Hirt-VOF and
- PLIC-VOF.
Hirt-VOF uses the "donescceptor” cell method. Thattis

1 say, between any two adjacent grideeads regarded as

"providing" fluid grid; the other is'accept" fluid grid. The

Fig.5 An example of the volume fraction of two phase donoracceptor” cell method not only considers the C
interface in a grid function in the unit gridtself, but also considers its adjacent

grid, that issay the upstream and downstream effects of the C

function are considered. Variables are describeHiktyand

Nichols [3], Ramshaw and Trapp [4]

The conservation form of VOF function transport equation
can be written as follows:

(C,U) (@Y%)

G (41
ut K yH 0

v/
Nplfxl?g(‘l! 86
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The above formula imtegrated on a control volume:

W :()g-llz’ x *ﬂ./2) fy 2 y lﬂ'?) (ﬁ 11; ])
(C:;d_ C['jj)d}( dY *gC, U+1/21,) ('i(% iU-ll]Z,) ﬁjtgy

+gCi,jV|,j+1/2) -(ijj, -1/2) gth & (42)
Take the first minor terms in second major temhghe
equation as an example, it can be rtem:

(C|,jUi +1/2 )dtd){ =( G Y) dy (43)
Here,V,=U,,,,, dtrepresents the flow rate penit length

of a vertical face in a computing grid, can be calculated by
following formula

C,; W, =min{ C,, || +CC, G, dx,}
cc=max{ (1-Go M, (1-G dx, , P

Subscript D represents donor  cell,
AD represents the donor cell or the accetlt. It depends
on the normal direction of the free surface in the.dfite
minsettingcanensure that the flux through the rightesof
the fluid computing grid does not exceed the fluidmoé of
the donor cells; themaxsetting can ensurthat the flux
through the right sidef thevacuumgrid is not more than the
pore volume ofhe donor cellsThis ensureshat tre volume

(44)

fraction isbetween 0 and 1. According to the VOF metho
proposed by Hirt and Nichols, the free surface in the grid |

J+1

the

i-1 i i+1

Fig.7 Free surface reconstruction (HWYOF)

subscript

In order to impove the accuracy of computation, the
PLIC-VOF method has made a more precise improvement
and effort for the calculation of free surface [5]. The
reconstruction of the free surface is based on the normal and
volume fraction of the free surface, and thenmairdirection
of the free surface is determined by tiradientof volume
fraction, so that it will return to the approximate method to
aﬁe nine adjacent grids. As long as the normal direction of the
ree surface is definite, the location of the interfaae be
etemined. The normal othe free surface islefined as

approximated by two line segments (vertical line segmentspr .
. . . ollows:
horizontal line segments). The reconstruction of the free

sufface is as follows:
In Figure 7, nine computational grids are ugessuming

that the free stiace is two local functions of (X) andX(y),
Y 1,
X, 4,

dY/ dxand dX / dyis considered through slope. Accordin

represents the value of grigolumni- 1,]
represents the value of gridolumn j - 1,j,j

to the slope the direction of the free surface can be

determined.

j+l
Y|=é_ G dy, | =i-1i] %

k=j 41
é'dY 6,_ 2(Yi+l- Y—l) (45
ge& ig_ dx,, +2dx +dx,

i+1
X=a Gadx, 1=j-1j,j ¢

k=i 1
3 3 2(X.,., - X
idx 8: ( j+1 ]-1) (46)
cdy = dy,,+2dy +dy,

o |9

dx

nl)fj:(CHl,j{ 42@3} $:Ij,+ 1- C'jL,.l -2|(;j1,

Ci )/ dx@7)
rﬁj :(q+l,j 1 "ZQJ' » € 5 1+ G L +1 -29, 1 'CjI

)/ dy (48)
The same definition of the free surface angle

gis b=arctang N, )-p ¢b ¢, its normalization

C

an be written as:a=tan* @xtan b/dy ) pt a% .

According to he surfaceangle we can identify four types of
free surface inegrid, such as figure 8:

|

Fig. 8Four types of free surfaceconstruction®LIC-VOF)

Finally, the interface is moved by the lineaterpolation
velocity of every point at surface the grid edge. Once the
interface changes, the new volume fraction in the grid can be

, we define the free surface is as thgg|culated, so thate can go to the next tinemd make a new

round of calculation.

horizontal line segment; otherwise, the free surface ia as

vertical line segment.

v/
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V. NUMERICAL SIMULATION RESULTS

The results of some numerical simulations are analiyzed
this section. First, the numerical simulation results of the
Newtonian fluid and viscoelastic fluid corresponding to the
single phase flow are verified. Then, a test case is used to
verify the feasibility of using HitvOF and PLIGVOF to
solve the C faction transport equation. Finally, the

87 www.ijntr.org
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preliminary results of the numerical simulation of the two The same singlghase flow simulationVeaddviscoelatic

phase flow (gas / liquid) code are presented.

relaxation timel00.

A. Single Phase Flow

Here is a method commonly used in many documents to
verify the NavierStokes equation. It saa known theoretical
solution.

It is located between two parallel flat walls. The length of
the flat plae is 500, the height is 50, baghds are open, and
the middle is filled with liquid. As a boundary condition, a
horizontal velocityU =1 is goplied to the left openinghe
pressureP=0 is set at e right end, anaero velocity is
restricted tothe two upper and lower horizontal walls.
According toNewtonian fluid the dengy and viscosity arg;
the entie flow is initially stationary. For solving the
incompressible  NavieBtockes equations we can
numerically simulate its pressure and velocity field.

The theoretical solution is the following:

uw=3g -0 ¢

n U (49,

50

P
00028560
00027025
00025092

40 0.0023 158)

30

20

1)

I R I I R
0 100 200 300 400 500
x

Fig. 9 Velocitypressure field foNewtonian fluid t=80

fluid parameters, which argiscoelastic viscosityl and

Fig. 11 Velocitypressure field forigcoelastic fluid t=80

1.5

%=0
x=10
x=20

0.5

0

0

10

20

v

30 40 50

Fig. 12Velodity profile for viscoelastic fluid t=80

Figure 11 shows the velocity and pressure fiedd

viscoelastic fluicattimet =80. Figurel2 shows the velocity

15 ¢

2 distribution cure of viscoelastic fluid atimet =80. It can

. o 3
be seen that the trend value loistvelocity is h|ghethan§ .
The influence of viscoelastic effect on velocity profile can be

found from it.

B. VOF Transport Equation Test

os | | In order to verify the solution of VOF function trgport

0

o] 10 20 30 40 50
¥

Fig. 10 Velocity profile for Newtonian fluid t=80

equation on HivOF and PLIGVOF methods, we test it
based on Bruchoj], Vincent and Caltagirong].

In a twodimensional cavity with a fixed velocity field, a
circle is rotated along the axis. The size of the square cavity is
(23 1), figure 13 shows the velocity field of rotation.

Figure9 shows the velocity and pressure field of Newanon
fluid at timet =80. We can see that the pressure decreases
from left to right and reaches 0 at atlFgure 10 shows that
the velocity distribution curve of each node along the axis is
parabolic. It can be seen that it is approximate to the
theaetical solution, and the velociof the entrance is alway
1. As time goes on, the velocitf the exit isgetting closer

to>.
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Fig. 13 Velocity field schematic

We define a circle with aadius0.1, (0.7,0.5) as the
center. With the action of velocity fig the circle and its
inner area will revolve around the center of the square cav
(0.5,0.5) until it returns to its initiaposition(0.7,0.5,.

Fig. 15 Circularotaion (PLIC-VOF)

Fig.14 andFig.15 show the numerical sifation of the test
in two waysrespectively. It an be seen that whdn=0 the
valueof the inner region is 1, the value outside the circle is
the value between twagartsis 0 to1. Then we use Hi#VOF
and PLIGVOF to rotate the circle successfully, so thaih
go back to the initial positigrand its shape is still the saine
thesetwo ways. The more refined mesh is, the more accurate
the shape will be. Because PEMOF has higher accuracy
than HirtVOF, its circular state is maintained better, and the
phenomenon of unexpected diffusion is successfully
suppressed.

C. Two Phasé-low (Gad Liquid)

The liquid densitys 1,the gas density is 0.001, and tees
viscosity is 0.Q. Two methods are used to get the preliminary
simulation results of two phase flow (gas / liquid).

3
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Fig. 14 Circularotation Hirt-VOF)
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Fig. 16 Velocity profile of two phase flow t=80
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Fig. 17 The interfacial morplagy of two-phase flow
t=80 top: HirtVOF, down PLIC-VOF

From Figurel6, we can see the change of velocity profile in
two-phase flov as time goes on. Atmet =80, Figure 17
shows thenumericalresult of the interface stateising two
methods,and PLIGVOF keeps the interfacehape much
better tharHirt-VOF, because of the different selection of its ) )
interface reconstruction methods. Fig. 18 PLIGVOF mterface mqrphology of twphase

Finally, PLIGVOF is used to present the change of the flow at different time
interface between different gas / liquid two phase flow.

VI. CONCLUSION

This paper presents the preliminary simulation results of the
stratfied form of two immiscible liquids betweentwo
horizontal walls. When time is, @he red area represents the
liquid, the blue area represents thesgand the green area
represents the interface of the two fluids. As time goes on, the
velocity field begins to evolve from static state, and the
interface is slowly sheared away, and the flow begins to
become more and more unstable. It is proved that thi
phenomenon is reasonable in reality.

Based orrational knowledge and piglinary exploration,
we expound the numerical simulation method of fluid
medanics in detail. Althoughihe NavierStdkes equation
and the constitutivequaion of the viscoelastitensor useé
by the finite volume method fothe single phase flow
between the two planwallscan be accurately numerically
simulated, but so far, many of its mysteries are still not
understood. The application development space is great. In
the process dfolving the problem of actual fluid engineering
in the future, we should medte challenge and use the tobl
mathematical theory to overcorttee difficulties, andbtain
both results otheoretical research and practical application.
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