Relative Controllability of Fractional Integrodifferential Systems in Banach Spaces with Distributed Delays in the Control

Dr Sir Paul Anaetodike Oraekie

Abstract— In this work, Fractional Integro-differential Systems in Banach Spaces with Distributed Delays in the Control of the form:

$$\frac{d^nx(t)}{dt^n} = Ax(t) + \int_0^t d_0H(t,\theta)u(t+\theta)$$

$$+f\left(t,x(t),\int_0^t g(t,s,x(s))ds\right)$$

is presented for controllability analysis. Necessary and Sufficient Conditions for the system to be relatively controllable are established. The Set Functions upon which our results hinged were extracted. Uses were made of: Unsymmetric Fubini theorem, the Controllability Standard and the Concept of Fractional Calculus to establish results.

Index Terms— Relative Controllability, Fractional Integro-differential Systems, Banach Spaces, Fractional Calculus, Unsymmetric Fubini Theorem, Positive Definite.

I. INTRODUCTION

According to Bonilla et al (2007), fractional differential equations emerged as a new branch of mathematics. Fractional differential equations have been used for many mathematical models in Sciences and Engineering. The equations are considered as an alternative model to nonlinear differential equations. The theory of fractional differential equations has been studied extensively by many authors Dulbecco (1996) and Lakshmikantham(2008) . While the problems of stability for fractional differential systems are discussed in Bonnet (2000) , Nec(2007), Balachandran(2009).

Apart from stability, another important qualitative behavior of a dynamical system is controllability. Systematic study of controllability started over years at the beginning of the sixties when the theory of controllability based on the description in the form of state space for both time-varying and time-invariant linear control systems are carried out. Roughly speaking, controllability generally means that, it is possible to steer a dynamical control system from an initial state x(0) of the system to any final state x(t) in some finite time using the set of admissible controls Oraekie(2013) . The concept of controllability plays a major role in both finite and infinite dynamical systems, that is systems represented by ordinary differential equations and partial differential equations respectively. So it is natural to extend this concept to to dynamical systems represented by fractional differential equations. Many partial fractional differential equations and Integro-differential equation can be expressed as fractional differential equations and Integro-differential equations in Banach spaces Elsayed (1966).

There exist many works on finite dimensional controllability of linear systems Klama (1993) and infinite dimensional systems in abstract spaces Curtain (1978) . The controllability problems of nonlinear systems and Integro-differential systems with delays have been carried out by many researchers in both finite and infinite dimensional spaces Balachandran (1989) and Balachandran (2002).

Controllability of fractional differential systems in finite dimensional space have been studied by Chen (2006) and Shamardan(2000). While Balachandran (2009) studied Controllability of fractional Integro-differential systems in Banach spaces.

In this paper, we study the relative controllability of fractional Integro-differential systems in Banach spaces with distributed delays in the control the controllability standard of dynamical control systems and the unsymmetric Fubini theorem to establish results.

II. PRELIMINARIES

Let n be a positive integer and E $= (-\infty, \infty)$ be the real line. Denote E^n $= \text{the space of}$ the Euclidean space with norm denoted by $\| \cdot \|$. If $f = [t_0, t_1]$ is any interval of E, L_2 is Lebesgue space of square integrable functions from J to E^n written as $L_2([t_0, t_1], E^n)$. Let $h > 0$ be positive real number and let $C([t_0, t_1], E^n)$ be the Banach space of continuous functions with norm of uniform convergence defined by $\| \phi \| = \sup_{s \in J} \| \phi(s) \|, \phi \in C([t_0, t_1], E^n)$.

If x is a function from $[-h, \infty)$ to E^n, then $x(t)$ is a function defined on the delay interval $[-h, 0]$ given as:

$$x(t) = x(t - s); s \in [-h, 0], t \in [0, \infty).$$

Definition 2.1 (Balachandran(2009))

The Riemann Γ-Liouville fractional integral operator of order $\beta > 0$ of function $f \in \mathbb{C}_n^n, n \geq -1$ is defined as:

$$I^\beta f(t) = \frac{1}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-1} f(s)ds$$

Definition 2.2 (fractional derivative)
If the function \(f \in C^m \) and \(m \) is positive integer, then we can define the fractional derivative of \(f(t) \) in the Caputo sense as:

\[
\frac{d^n f(t)}{dt^n} = \frac{1}{\rho(n-m)} \int_0^t (t-s)^{m-n-1} f^{(m)}(s)ds \quad ; \quad m - 1 < n \leq m.
\]

If \(m = 1 \), then \(m - 1 < n \leq m \) becomes \(0 < n \leq 1 \). Then

\[
\frac{d^nf(t)}{dt^n} = \frac{1}{\rho(1-n)} \int_0^t (t-s)^{1-n} f^1(s)ds
\]

\[
= \frac{1}{\rho(1-n)} \int_0^t (t-s)^{-n} f^1(s)ds
\]

\[
= \frac{1}{\rho(1-n)} \int_0^t \frac{1}{(t-s)^n} f^1(s)ds
\]

\[
= \frac{1}{\rho(1-n)} \int_0^t f^1(s) (t-s)^{-n}ds,
\]

where \(f^1(s) = \frac{df(s)}{ds} \) and \(f \) is an abstract function with values in \(X \).

2.1. Variation of Constant Formula

Consider the following system represented by the fractional

Integro-differential equations in Banach spaces with distributed delays in the control of the form:

\[
\frac{d^n f(t)}{dt^n} = Ax(t) + \int_{-\theta}^t ds \int_{t-s}^{0} H(t,\theta) u(t + \theta) ds\]

\[+ f(t, x(t), \int_0^t g(t, s, x(s))ds) \tag{1.1}\]

\(x(0) = x_0; t \in [t_0, t_1], \)

where the state \(x(t) \) takes values in the Banach space \(X; \) \(0 < n < 1 \), the control function \(u \)

\(\in L_2([t_0, t_1], U) \), a Banach space of admissible control functions with

\(U \) as a Banach space. \(H(t, \theta) \) is an nxm matrix function continuous at \(t \) and of bounded variation

in \(\theta \) on \([-\theta, 0]\), \(\theta > 0 \) for each \(t \in [t_0, t_1]; t_1 > t_0 \). The integral is in the Lebesgue

\(\rightarrow \) Stieltjes

sense and is denoted by the symbol \(\int_{t}^{0} \). And the nonlinear operators \(f: X \times X \rightarrow X \),

\(g: \Delta X \rightarrow X; \Delta = \{(t, s); 0 \leq s \leq t \leq t_1\} \).

If, \(Gx(t) = \int_0^t g(t, s, x(s))ds, \)

then the equation \((1.1) \) becomes equivalent to the following nonlinear integral equation

\[
x(t) = x_0 + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{n-1} Ax(s)ds
\]

\[+ \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{n-1} \int_{-\theta}^{0} d_{\theta} H(t, \theta) u(t + \theta) ds\]

\[+ \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{n-1} f(t, x(t), Gx(s))ds\]

And the mild solution of the system \((1.1) \) is given by

\[
x(t) = T(t)x_0 + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{n-1} T(t - s) \int_{-\theta}^{0} d_{\theta} H(t, \theta) u(t + \theta) ds\]

\[+ \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{n-1} T(t - s) f(t, x(t), Gx(s))ds\] \tag{1.2}

which is similar to the concept defined in the book of Pazy(1983).

For the limiting case, \(n \rightarrow 1 \), the above system \((1.2) \) representation becomes

\[
x(t) = T(t)x_0 + \int_{t_0}^{t} T(t-s) \int_{-\theta}^{0} d_{\theta} H(t, \theta) u(t + \theta) ds\]

\[+ \int_{t_0}^{t} T(t-s) f(t, x(t), Gx(s))ds\] \tag{1.3}

Which is the mild solution of

\[
\frac{dx(t)}{dt} = Ax(t) + \int_{-\theta}^{0} d_{\theta} H(t, \theta) u(t + \theta) \]

\[+ f(t, x(t), Gx(s))\]

With initial condition \(x(0) = x_0 \in X \).

Analogous to the conventional controllability concept. A careful observation of the solution of the system \((1.1) \) given as system \((1.2) \) shows that the values of the control function \(u(t) \)

for \(t \in [-\theta, t_1] \) enter the definition of complete state thereby creating the need for an explicit variation of constant formula. The control in the 2nd term of the formula \((1.2) \),

therefore, has to be separated in the intervals \([-\theta, 0]\) and \([0, t_1]\).

To achieve this that 2nd term of system \((1.2) \) has to be transformed by applying the method of Klamka as contained in Chukwu(1992).

Finally, we interchange the order of integration using the Unsymmetric Fubuni theorem to have
\[
x(t) = T(t)x_0 + \int_{-h}^{t} d_{t,\theta} \left(\frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s) - s)H(s, \theta)u(s + \theta)ds \right) + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)d_{t,\theta}H^{*}(s) - \theta, \theta)u(s) \right] \]

Integration is still in the Lebesgue Stieltjes sense in the variable \(\theta \) in \(H \).

For brevity, let
\[
\alpha(t, s) = T(t)x_0 + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)f(t, x(t), Gx(s))ds
\]

\[
\beta(t, s) = \int_{t_0}^{t} \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)H(s) - \theta, \theta)u_0(s)ds \]

\[
\mu(t, s) = \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)d_{t,\theta}H^{*}(s) - \theta, \theta)u_0(s)ds \]

Simplifying system (2.1), we have
\[
x(t) = T(t)x_0 + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)f(t, x(t), Gx(s))ds + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)H(s) - \theta, \theta)u_0(s)ds \]

Using again the Unsymmetric Fubuni Theorem on the change of the order of integration and incorporating \(H^{*} \) as defined below:
\[
H^{*}(s - \theta, \theta) = \begin{cases}
H(s - \theta, \theta), & \text{for } s \leq t \\
0, & \text{for } s > t
\end{cases} \]

(2.3)

System (2.2) becomes
\[
x(t) = T(t)x_0 + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)f(t, x(t), Gx(s))ds + \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)H(s) - \theta, \theta)u_0(s)ds
\]

\[\text{R(t,t_0)} = \left\{ \int_{t_0}^{t} \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{-1} T(t-s)d_{t,\theta}H^{*}(s) - \theta, \theta)u_0(s)ds : u \in U ; |u_j| \leq 1 ; j = 1, 2, ..., m \right\} \]

Where \(U = \{ u \in L_2([t_0, t_1], E^m) \} \)

Definition 2.2.2 (Attainable set)
The attainable set of the system (1.1) denoted by \(A(t, t_0) \) is given as:
\[
A(t, t_0) = \{ x(t, x_0, u) : u \in U ; |u_j| \leq 1 ; \}
\]

\[\text{Definition 2.2.3 (Target set)}\]

The Target set for the system (1.1) denoted by \(G(t, t_0) \) is given by
\[
G(t, t_0) = \{ x(t, x_0, u) : t \geq \tau > t_0, \text{for some fixed } \tau \text{ and } u \in U \}
\]

Definition 2.2.4 (Controllability grammian or Map)
The controllability grammian or controllability map of the system (1.1) denoted by \(W(t, t_0) \)
Definition 2.2.5 (Positive Definite)

The controllability grammian or map \(W \) is said to be positive definite if \(W \) vanishes only at the origin and \(W(x) > 0 \) for all \(x \neq 0 \).

\[
D = \{ x \in \mathbb{R}^n : \|x\| \leq r ; r > 0 \} \subseteq \mathbb{R}^n
\]

2.3. RELATIONSHIP BETWEEN THE SET FUNCTIONS

We shall first establish the relationship between the attainable set and the reachable set, to enable us see that once a property has been proved for one set function, then it is applicable to the other. From equation (2.4),

\[A(t,t) = [\eta(t) + R(t, t_0)] \times \omega_u \in U; t \in [t_0, t_1] \text{, where,} \eta(t) = \alpha(t, s) + \beta(t, s). \]

This means that the attainable set is the translation of the reachable set through the origin \(\eta \in \mathbb{R}^n \). Using the attainable set, therefore, it is easy to show that the set functions possess the properties of convexity, closedness, and compactness. Not alone, the set functions are continuous on \([0, \infty)\) to the metric space of compact subsets of \(\mathbb{R}^n \).

CHUKWU (1988) and GYORI (1982) gave impetus for adaptations of the proofs of these properties for system (1).

Definition 2.3.1 (Relative controllability)

The system (1) is relatively controllable on the interval \([t_0, t_1]\) if

\[A(t,t) \cap C(t, t_0) \neq \phi, t > t_0 \in [t_0, t_1]. \]

Definition 2.3.1 (Properness)

The system (1) is proper in \(\mathbb{R}^n \) on the interval \([t_0, t_1]\) if \(\text{span} R(t, t_0) = \mathbb{R}^n \).

i.e., \(C^T \int_{t_0}^t \left[\frac{1}{\rho(n)} \int_{-h}^0 (t-s)^{-1}T(t-s)ds \right] H^*(s) - \theta, \theta \right] ds = 0 \text{ a.e.} \Rightarrow C = 0 ; C \in \mathbb{R}^n. \)

Definition 2.3.1 (Complete State)

We denote the complete state of system (1) at time \(t \) by \(z(t) = [x(t), u(t)] \).

Then, the initial complete state of system (1) at time \(t_0 \) is given by \(z(t_0) = [x_0, u(t_0)] \).

III. MAIN RESULTS

The issue of relative controllability of Neutral Volterra Integro-differential Equations have been settled in Balachandran (1992), Balachandran (1989), Balachandran (1997).
to the reachable set
\[R(t, t_0) = \left\{ \frac{1}{\rho(n)} \int_{t_0}^{t} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right\} \]
\[- \theta, \theta \right\} u(s) ds : u \in U; |u_j| \leq 1; j = 1, 2, ..., m \right\} \]

If we assume the relative controllability of the system (3.1) now, \(R(t, t_0) = E^n \), so that \(C \neq 0 \), showing that (3) implies (2). Or (1) is equivalent to (2) and (2) is equivalent to (3) and \(\psi - a - \psi (3) \to (2) \to (1) \).

Conversely, assume that system (3.1) is not controllable, so that the reachable \(R(t, t_0) \neq E^n \) for \(t \) > \(t_0 \). Then, there exists \(C \neq 0 \), \(C \in E^n \), such that \(C^T R(t, t_0) = 0 \).

It follows that for all admissible controls \(u \in L_2 \) that
\[0 = C^T \int_{t_0}^{t} \frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right\} \]
\[- \theta, \theta \right\} u(s) ds, \text{ for } u \in L_2 \]
\[= \int_{t_0}^{t} C^T \frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right\} \]
\[- \theta, \theta \right\} u(s) ds \]

Hence,
\[C^T \int_{t_0}^{t} \frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right\} \]
\[- \theta, \theta \right\} u(s) ds \right\} = 0, a.e.; s \in [t_0, t_1], C \neq 0. \]

By definition of properness, it implies that the system (3.1) is not proper, since \(C \neq 0. \)

Hence the system (3.1) is relatively controllable.

Theorem 3.2. (Sufficient conditions)

Consider the system
\[\frac{d^nx(t)}{dt^n} = Ax(t) + \int_{-h}^{t} d_\theta H(t, \theta) u(t + \theta) \]
\[+ f \left(t, x(t), \int_{0}^{t} g(r, s, x(s)) ds \right) \] (3.2)
\[x(0) = x_0; t \in J = [t_0, t_1], \]

with the same conditions on the systems' parameters as in the system (1.1), then the system (3.2) is relatively controllable on the interval \(J = [t_0, t_1] \) if and only if zero is in the interior of the reachable set.

PROOF

The reachable set \(R(t, t_0) \) is closed and convex subset of \(E^n \). Therefore, a point
\[y_1 \in E^n \] on the boundary implies that there is a support plane \(\pi \) of \(R(t, t_0) \) through \(y_1 \), i.e., \(C^T(y - y_1) \leq 0 \), for each \(y \in R(t, t_0) \), where \(C \neq 0 \) is an outward normal to the the support plane \(\pi \).

If \(u_1 \) is the corresponding control to \(y_1 \), we have
\[C^T \int_{t_0}^{t} \frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right\} \]
\[- \theta, \theta \right\} u_1(s) ds \] (3.2)

For each \(u \in U \) and since \(U \) is a unit sphere, the inequality (3.2) becomes
\[C^T \int_{t_0}^{t} \frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right\} \]
\[- \theta, \theta \right\} u(s) ds \leq C^T \int_{t_0}^{t} \frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right\} \]
\[- \theta, \theta \right\} u(s) ds \]

\[= \int_{t_0}^{t} C^T \left[\frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right] \]
\[- \theta, \theta \right\} u(s) ds \] (3.3).

Comparing (3.2) with (3.3), we have
\[u_1(t) = \text{sgn} C^T \left[\frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s) \right] \]
\[- \theta, \theta \right\} (3.4). \]

More so, as \(y_1 \) is on the boundary since we always have 0 \(\in R(t, t_0) \).

If zero were not in the interior of the reachable set \(R(t, t_0) \), then it is on the boundary.

Hence, from the preceding argument, it implies that
\[0 = \int_{t_0}^{t} C^T \left[\frac{1}{\rho(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d_\theta H^*(s - \theta, \theta) \right] \]

So that,
This, by the definition of properness implies that the system (3.2) is not proper since $C \neq 0$. However, if $0 \in \text{Interior} R(t, t_0)$ for $t > t_0; \ t > 0$

$$CT \frac{1}{f(n)} \int_{-h}^{0} (t-s)^{n-1} T(t-s) d\theta H_r(s-\theta, \theta)$$

$= 0 \ a.e., \ since \ the \ integral \ is \ not \ zero.$

Which is the properness of the system and by the equivalence in theorem (3.1), the relative controllability of the system (3.1) on the interval $J = [t_0, t_1]$ is established.

IV. CONCLUSION

The explicit variation of constant formula for the system (1.1) via à via system (3.1) was established using the Unsymmetric Fubini theorem. The set functions upon which our studies hinged were extracted from the Mild Solution.

We established the necessary condition for the system (1.1) to be relatively controllable. This is stated and proved in theorem (3.1). While the sufficient condition for the system (1.1) to be relatively controllable is stated and proved in theorem (3.2). That is, we established that a Fractional Integrodifferential Systems in a Banach Space with Distributed Delays in the Control, is relatively controllable on the interval $J = [t_0, t_1]$ if and only if zero is in the interior of the reachable set of the system (1.1).

REFERENCES