
 

                                                                        International Journal of New Technology and Research (IJNTR) 

                                                                                  ISSN:2454-4116,  Volume-3, Issue-12, December  2017  Pages 36-41 

                                                                                        36                                                                                  www.ijntr.org 

 

Abstract—Soil temperature is one of the soil characteristics 

that greatly influences the accuracy of Time Domain 

Reflectometry (TDR) measurements for estimating soil 

moisture content. The authors examine the performance of two 

feedforward Artificial Neural Networks (ANN) configurations, 

commonly used for data regression analysis, to adjust TDR soil 

moisture estimates using soil temperature and gravimetric data. 

The data used for this study was obtained during a period of six 

weeks (October-November 2017) in three adjacent test sites in 

the Purepecha Plateau (Michoacán, México) managed under 

different tillage practices: at rest, reduced tillage and intensive 

tillage respectively. 10 TDR measurements per week were 

obtained from each test site. 60 Soil samples from each 

measurement site were also collected simultaneously, to 

determine the soil moisture content by the gravimetric method, 

and the soil temperature at 20 cm depth. 24 different 

configurations of ANNs were tested. The best result was 

obtained using a feedforward ANN with 11 tanh-sigmoid 

neurons in the input (hidden) layer. In addition, the authors also 

analyze the effect of different tillage practices on the soil 

moisture data. The results corroborate that tillage practices 

influence the soil moisture measurements and thus the best 

ANN results are obtained when the data used for training the 

ANNs is derived from sites managed under the same tillage 

practice. 

 
Index Terms— Soil moisture, time domain reflectometry, 

Artificial Neural Networks, temperature effect on soil moisture 

measurements.  

I. INTRODUCTION 

  Quantitative description of the soil moisture content, is 

fundamental for agronomic, geological, ecological, 

biological and hydrological applications [1] to understand 
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water balance, plan irrigation schemes, and to predict the 

dynamics of transport of chemicals (fertilizers and/or 

pollutants) on the surface and within the soil. Multiple 

analytical and numerical models are continuously proposed to 

try to predict the dynamics of water infiltration, and identify 

hydraulic parameters that influence the accurate measurement 

of soil moisture. For instance, the advances in satellite-based 

[2]–[3] surface soil moisture monitoring systems offer 

opportunities to qualify wide areas simultaneously 

considering spatial and temporal dynamics. However, there 

are limitations in satellite-based soil moisture measurement 

systems [4]-[6] and thus it is still necessary to conduct local 

surveys to assess soil hydraulic properties from direct 

observations [7]. One of the preferred methods used for 

estimating in situ soil moisture content is the use of 

electromagnetic techniques. In particular, Time Domain 

Reflectometry (TDR) has gained worldwide acceptance 

because it allows rapid in situ estimation of soil water content 

[8]. In addition the continuous introduction of commercial 

TDR devices in the market has lowered TDR device cost and 

thus it has become a cost-effective tool suitable for obtaining 

in situ soil moisture measurements [9]. However, soil water 

content is a dynamic process [10]-[12], non-linear in nature 

and depends on a large number of variables, ranging from the 

type of soil, geo-localization and the use fertilizers and 

chemical content of the soil, to tillage practices and weather 

conditions. Although, in principle, TDR measurements are 

considerable immune to soil properties other that water 

content, it has been shown that TDR measurements have to 

be compensated to account for particular soil characteristics 

[13]. Consequently, reports of theoretical and practical 

methods for compensating electromagnetically-derived 

measurements for accurate measurement of soil moisture, can 

rarely be extrapolated to predict the properties of soils with 

respect to the soil evolution and usage, even for the same 

region and/or terrain. Soil temperature [14] and tillage [15] 

have been shown to influence electromagnetic soil moisture 

measurements. Here, the authors examine the performance of 

two Artificial Neural Network (ANN) configurations 

commonly used for data regression analysis to improve the 

measurement accuracy of TDR-derived measurements using 

soil temperature data. In addition, this study investigates the 
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degree of accuracy of TDR measurements on three adjacent 

test sites managed under different tillage practices. 

II. MATERIALS AND METHODS 

The study presented in this work considers three test sites 

(test site 1: S1; test site 2: S2, test site 3: S3) located in region 

known as the Purepecha Plateau of the Michoacán state, 

Mexico. The test sites are rain fed. Test Site 1 is at rest, 

whereas S2 and S3 are maize crops, but are managed under 

different tillage practices: conservation (S2), and intensive 

tillage (S3) respectively. The predominant soil type of the test 

region is andosol [16] with high clay content (Table 1). Most 

of the rainfall precipitation was reported by the local weather 

station from July to September 2017 with occasional 

precipitations in October-November 2017 (Fig. 1). 

Thus, after the rain season has faded away, 10 soil moisture 

measurements were obtained weekly in each test site starting 

at noon, using a TDR probe (CS616: Campbell Scientific) for 

a period of six weeks, yielding a total of 60 TDR 

measurements per test site. In addition, due to the volumetric 

nature of the TDR measurements, a soil sample was collected 

at a depth of 20 cm for each TDR measurement site to 

determine the water content by the gravimetric method. 

Moreover, the soil sample temperature was measured 

immediately after the sample was collected using a linearized 

semiconductor transducer (LM35) and associated signal 

conditioning circuitry.  Other parameters determined from the 

soil sample were also determined from the soil samples: soil 

taxonomy, apparent density and pH. Table 1 shows a 

summary of the soil type, pH and apparent density. 

In order to compare the TDR measurements with 

gravimetric data as reference, the TDR measurements were 

adjusted based on the manufacturer guidelines [17] using the 

temperature information obtained in situ. Two different 

configurations of two-layer, feedforward Artificial Neural 

Networks (ANN) commonly used for regression analysis, 

were implemented using MATLAB in order to determine the 

degree of improvement that can be obtained to correct TDR 

measurements using gravimetric data as reference (target 

values) and by varying the parameters of the input layer. Fig. 

2 shows the ANN architectures used. The input parameters 

(TDR measurements and corresponding temperature 

measurements) are assembled in a 2 x n matrix, P, where n is 

the number of measurements used for training. The target 

values for training correspond to the soil measurements 

obtained from the gravimetric method assembled in a vector 

of size 1 x n. 

 

 

The first ANN uses a logarithmic-sigmoid activation 

function in the input layer (1): 

 

       (1) 

 

where c1 is the weighted sum of the input pair 

TDR-temperature. The second ANN uses a hyperbolic 

tangential activation function (2): 

 

       (2) 

 
In both cases the output activation function is linear (3): 

 

       (3) 
 

where W2 and b2 correspond to the weight and biases of the 

second layer. The networks are trained with momentum (4): 

 

     (4) 

 

where ∆W(i,j) represents the weights adjustment, mc is the 

momentum constant (mc=0.95), D(i) are derivatives of errors 

(delta vectors), an lr=0.1 is the learning rate [18]. The input 

data is presented to the network and trained for 200 epochs 

maximum. Given the non-linear nature of the relationship 

TDR-temperature, choosing the number of neurons of the 

input layer and the number of data used for training and 

validation is a compromise. On the one hand, choosing the 

data for training and validation is essential to avoid 

overfitting. 

 

Thus, data was chosen at a rate of 70% (training)-15% 

(testing)-15% (validation) for sub-sampling validation on 

Table 1. Summary of soil characteristics per test site 

Test 

site 

Soil characteristic per test site 

Apparent 

Density 
Clay Lime Sand 

pH 

g cm-3 % % % 

S1 0.63 49.10 40.10 10.8 6.09 

S2 0.61 48.80 40.33 10.9 6.13 

S3 0.69 51.20 38.50 10.3 6.21 

Fig. 1: Accumulated rain fall per month in the test sites 

preceding and during the survey period (October – November 

2017) 

Fig. 2: Architecture of Artificial Neural Networks (ANNs) used 

for data regression analysis. The difference is the input layer: 

A) log-sigmoid and B) hyperbolic tangent-sigmoid activation 

functions.  
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two cases: all data from the three sites, and data 

corresponding to each test site. In addition, in the case of the 

analysis for each test site, two conditions were examined to 

investigate the effect of the number of samples available: 60 

and 40 data pairs. Moreover, the number input neurons was 

varied from 1 to 12 neurons to investigate the effect on 

accuracy as well. 

III. RESULTS AND DISCUSSION 

A. TDR and gravimetric measurements 

 

Fig. 3 shows a comparison of the measurements obtained 

for each test site arranged in ascending order, considering that 

gravimetric (direct) measurements represent accurately the 

soil moisture content (SWC) in the measuring depth. TDR 

measurements from the test site at rest (S1) appear to be close 

to gravimetric data; this is probably due to the undisturbed 

condition of the terrain. However, in contrast with 

assumptions that TDR tends to overestimate [19] on clay-type 

soils due to dielectric loss, the TDR measurements appear to 

underestimate slightly SWC in test sites S2 and S3.    

Table 2. Comparison of mean (μ) and standard deviation 

(σ) values of Time Domain Reflectometry (TDR) and 

gravimetric measurements per test site and overall 

considering the entire data set. 

TDR measurements 

(%) water content 

Gravimetric measurements 

(%) water content 

 Mean 

μ 

Std 

dev σ 

 Mean 

μ 

Std dev 

σ 

TDR1 28.24 3.66 TS1 28.18 2.93 

TDR2 28.15 3.61 TS2 29.95 3.47 

TDR3 28.23 3.59 TS3 30.10 3.45 

TDR_all 28.21 3.60 TS_all 29.41 3.39 

 

In addition, the data dispersion is larger for test sites S2 and 

S3 which is congruent with other works. Qualitatively, 

overall, the mean and standard deviation values of the 

measurements obtained from the three test sites appear to 

yield TDR values fairly close to gravimetric measurements 

(Table 2). However, upon closer inspection by plotting the 

individual error values, it can be observed that many of the 

values differ significantly (Fig 4). Fig. 4 shows the error 

graph of each TDR measurement with respect to its 

gravimetric counterpart; there are values with error as large as 

25%. The Mean Squared Error (MSE) Calculation indicates 

an overall MSE of 7.742 (Fig. 5). 

 

 

 

Fig 3: Comparison of measurements obtained on the three test 

sites (S1, S2, S3) using Time Domain Reflectometry (TDR1, 

TDR2, TDR3 respectively) temperature corrected values, and 

gravimetric measurements (TS1, TS2, TS3 respectively). 

Results are presented by test site: A) test site 1 (S1), B) test site 2 

(S2) and C) test site 3 (S3). 

Fig. 5: Mean Squared Error of TDR measurements with respect 

to gravimetric measurements per site and overall 

Fig 4: Comparison of measurements obtained on the three test 

sites (S1, S2, S3) using Time Domain Reflectometry (TDR1, 

TDR2, TDR3 respectively and gravimetric measurements (TS1, 

TS2, TS3 respectively). Results are presented by test site: A) 

test site 1 (S1), B) test site 2 (S2) and test site 3 (S3). 
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Thus, there are incentives to examine data regression 

analysis methods to improve the quality of information 

obtained from TDR measurements. 

 

B. Correcting TDR measurements using soil temperature 

measurements  

 

One of the advantages of using ANNs for data regression 

analysis is that fairly simple architectures may result in quite 

powerful tool to produce estimates from complex input 

patterns. In section I., it was pointed out that there are many 

factors that influence TDR measurements. Previous works 

have reported the usefulness of ANN to correct TDR 

information in sandy soils [20]-[21] and soils from tropical 

areas [22]. This work focuses on the usefulness of using soil 

temperature information as a key parameter to correct TDR 

measurements. Thus, given the complex nature of the TDR 

different configurations of ANN were tested to determine the 

degree of accuracy as a function of number of input layer 

neurons and number of samples available. The networks were 

trained first using the data pertaining each individual test site. 

The test trials later proceeded using all available data 

considering that the three test sites are adjacent have similar 

soil taxonomy. 

 

1) Case study 1: Training the ANNs for correction of 

TDR measurements per test site 

 

Fig. 6 shows a summary of MSE values obtained after 

training the two ANN configurations with 40 and 60 

TDR-temperature data values. Using a low number of input 

neurons appears to lead to underfitting. Results are shown up 

to 12 neurons in the input layer; after 12 the MSE values does 

not diminish and appears to lead to overfitting. The 

tanh-sigmoid activation function in the input layer appears to 

yield better results than the log-sigmod activation function. 

The best result was obtained using the whole data set (60 

input pair TDR-temperature values). Thus, three sets of 

weights and biases were obtained for each test site. Thus, 

correction of the TDR values will be reported for an ANN 

with 11 neurons in the input layer with its corresponding 

weights and biases (Fig. 7).    

  

The results shown in Fig. 7 suggest that the networks, 

trained for each particular test site, yield information closer to 

gravimetric data.  In addition the data dispersion is smaller, 

which suggests an improvement in data regression. 

 

2) Case study 2: Using the entire data set 

 

Fig. 6: Comparison of MSE errors obtained using 40 and 60 

measurements for each test site. Results are shown for 24 ANN 

configurations varying the number of neurons in the input layer: 

12 MSE results using logsigmoid activation functions and 12 

MSE results using tanh-sigmoid activation functions in the input 

layer.  

Fig. 7: Result of correcting TDR values using soil temperature 

information and an ANN with 11 tanh-sigmoid neurons in the 

input layer. Results shown for A) test site 1 (S1), B) test site 2 

(S2), C), test site 3 (S3). 

Fig. 8. Result of correcting TDR data considering the entire data 

set for training and testing. The corrected TDR values 

(TDR_corrected_all) appear to have a smaller dispersion with 

reference to the gravimetric data (TS_all).  
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Since the three test sites are located adjacently and the soil 

composition is consistent throughout the three test sites, in 

this section, the entire data set is used for training the ANNs 

disregarding that data correspond to sites managed under 

different tillage practices. The corrected TDR values shown 

in Fig. 8 (TDR_corrected_all) appear to have a smaller 

dispersion and closer to the gravimetric data (TS_all) than the 

original, TDR values (TDR_all). Indeed, the MSE obtained is 

smaller for the corrected data (Fig. 9).  However the best 

MSE figure obtained training the network without 

segregating the data according to the test site, is larger than 

that obtained separating the data per test site (Table 3). The 

best MSE value of TDR measurements was obtained for test 

site 1; again, this is probably due to the undisturbed nature of 

the field. The TDR values increasingly differ as the tillage 

intensifies; this finding is consistent with reports that tillage 

influences TDR measurements. Using soil temperature 

information appears to be a suitable candidate to adjust TDR 

data.   

IV. CONCLUSION 

Although the search continues for a universal formula [23] 

that can accommodate the effect of predominant soil 

variables, in the meantime, it is still necessary to use 

information from each particular site of interest. 

Manufacturers of TDR measurement equipment give 

guidelines for calibrating their commercial products based on 

their laboratory findings. In addition researchers often report 

the results of case studies. 

Obtaining in situ data intended for laboratory analysis may 

be a painstaking endeavor, especially if surveys are 

conducted regularly. However, due to the non-linear nature of 

the soil dynamics, it is still necessary to resort to in situ 

sampling in order to adjust for spatio-temporal changes in the 

soil water content.  

Thus, this work examines the degree of improvement that 

can be obtained from using ANNs to correct TDR data using 

soil temperature information.  

Data was obtained for three test sites managed under 

different tillage practices: undisturbed, conservation and 

intensive tillage. Overall the results indicate that TDR 

measurements deliver information close to gravimetric data 

using the calibration data provided by the manufacturer. 

Upon closer inspection, there are discrepancies between the 

TDR measurements and gravimetric data. The TDR 

measurements were closer to gravimetric measurements in 

the test site 1; since the soil was allowed to attain even 

hydraulic properties, due to lack of tillage; the TDR 

measurements appear to be consistent with gravimetric data. 

However, when the instrument was tested in soils managed 

with conservation and intensive tillage, it appears that the 

effect of ploughing, fertilizers and organic content greatly 

influence the TDR measurements. The results also suggest 

that using soil temperature and gravimetric information for 

regression analysis can compensate for some of the effects of 

tillage on TDR measurements. It is also worth noting that the 

manner in which the measurements are performed also affect 

the TDR response. Although the instrument was installed in 

the measurement sites using a guide to insert the electrode 

array, clay type soils are hard and inevitably a small deviation 

in the distance between the electrodes may occur that may 

also influence the TDR measurement. In any case, it was 

shown that ANN regression analysis can improve the quality 

of information obtained from TDR measurements. In order to 

reduce the probability of training a network with results 

biased towards accommodating the given measurement set, 

different configurations were tested using and different 

amounts of training and testing data available. Again, even 

for test sites of similar taxonomy, the results indicate that it is 

important to consider obtaining data pertaining to a particular 

test site. Current and future work is directed towards 

implementing the methodology presented in this work to 

develop cost-effective electromagnetic soil moisture 

measurement equipment that can easily be adjusted to 

particular test sites.  
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