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 

Abstract—The diagnosability is an important parameter in 

measuring the fault tolerance and the reliability of 

multiprocessor systems. In 2012, Peng et al. proposed a measure 

for fault diagnosis of the system, called the g-good-neighbor 

diagnosability that restrains each fault-free vertex containing at 

least g fault-free neighbors. The shuffle-cube 
nSQ  is a variation 

of the n-dimensional  hypercube 
nQ . In this paper, we show 

that the 1-good-neighbor diagnosability of 
nSQ  under the PMC 

model and MM *  model is 2 3n  for 6n  . 

 
Index Terms—g-Good-neighbor diagnosability, Interconnection 

network, MM* model, PMC model, Shuffle-cube. 

 

I. INTRODUCTION 

  Interconnection networks (networks for short) as 

underlying topologies of many multiprocessor systems are 

usually represented by a graph where the vertices represent 

processors and the links represent communication links 

between processors. We use graphs and networks 

interchangeably. With a rapid increase in the number of 

processors in the multiple-processor system, the possibility 

that some processors may fail is rising. The reliability is one 

of the most important topics concerning the 

multiple-processor system and processors identification plays 

an essential role for reliable computing. The process of 

identifying the faulty processors is called the diagnosis of the 

system. A system G  is said to be t -diagnosable if all faulty 

processors can be identified without replacement, provided 

that the number of faults presented does not exceed t . The 

diagnosability of G  is the maximum value of t  such that G  

is t -diagnosable [1]. For a t -diagnosable system, Dahbura 

and Masson in [2] proposed an algorithm with time complex 
2.5( )O n , which can effectively identify the set of faulty 

processors. 

To identify the faulty processors, several diagnostic 

models were proposed in the prior work. One major approach 

is the PMC model introduced by Preparata et al. [3]. The 

diagnosis of the system is achieved through two linked 

processors testing each other. Another important model, 

called the MM model, was proposed by Maeng and Malek 

[4]. In the MM model, a vertex sends the same task to its two 
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neighbors, and then compares their responses. The MM *  is a 

specialization of the MM model in which each vertice must 

test any two of its neighbors. In 2005, Lai et al. introduced a 

restricted diagnosability called conditional diagnosability in 

[5]. They considered the situation that any faulty set cannot 

contain all the neighbors of any vertex in the system. In [6], 

Xu et al. showed that the conditional diagnosability of the 

n -dimensional shuffle-cube is 4 15n  for 2 ( 4)n mod  

and 10n  . In 2012, Peng et al. proposed a measure for faulty 

diagnosis of the system in [7], called the g-good-neighbor 

diagnosability (also called the g-good-neighbor conditional 

diagnosability), which requires that every fault-free vertice 

contains at least g fault-free neighbors. In [7],[8], they 

showed the g-good-neighbor diagnosability of the 

n-dimensional hypercube under the PMC model and MM *  

model. In [9], Xu et al. showed the g-good-neighbor 

diagnosability of the complete cubic network under the PMC 

model and MM *  model. Meanwhile, Yuan et al. in [10],[11] 

determined the g-good-neighbor diagnosability of the k -ary 

n -cube ( 3k   and 3n ) under the PMC model and MM *  

model. Since the probability that one fault-free vertex has at 

least one fault-free neighbor is much greater than the 

probability that one faulty vertex has at least one fault-free 

neighbor, the 1-good-neighbor diagnosability is more 

practical than the conditional diagnosability. Recently, in 

[12],[13], Wang et al. gave the g-good-neighbor 

diagnosability of Cayley graphs generated by the 

transposition trees under the PMC model and MM *  model 

for 1,2g  . In [14], Zhao and Wang proved that the 

1-good-neighbor diagnosability of augmented 3 -ary 

n -cubes is 8 10n  under  the PMC model and MM *  model 

for 4n . In [15], Hao and Wang proved that the 

1-good-neighbor diagnosability of augmented k-ary n-cubes 

under the PMC model and MM *  model is 8 9n  for 4n  

and 4k  . In [16], Jirimutu and Wang proved that the 

1-good-neighbor diagnosability of alternating group graph 

networks is 2 4n  for 5n  under the PMC model and 

MM *  model. 

In this paper, we consider the 1-good-neighbor 

diagnosability of the shuffle-cube which is a new 

interconnection network topology presented by Li et al.[17]. 

The rest of the paper is organized as follows. Some 

preliminaries are provided in Section 2 . Our main results are 

presented in Section 3 . Finally, the conclusion is given in 

Section 4 .  
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II. PRELIMINARIES 

In this section, some definitions and notations needed for our 

discussion, the PMC model and MM *  model, and the 

n-dimensional shuffle-cube 
nSQ  are introduced. 

A. Definitions and Notations 

For convenience, the graphs and networks are used 

interchangeably. Given a nonempty vertex subset V   of V , 

the induced subgraph by V   in G , denoted by [ ]G V  , is a 

graph, whose vertex set is V   and the edge set is the set of all 

the edges of G  with both endpoints in V  . The degree 

( )Gd u  of a vertex u  is the number of edges incident with u . 

We use ( )G  to denote the minimum degrees of vertices of 

G , and ( , )Gd u v  to denote the distance between u  and v  in 

G . For any vertex u , we define the neighborhood ( )GN u  of 

u  in G  to be the set of vertices adjacent to u . Let 

( )S V G . We use ( )GN S  to denote the set ( )Gu S
N u S

 � . 

For the neighborhoods and degrees, we usually omit the 

subscript for the graph G  when no confusion arises. A graph 

G  is k -regular if ( )d u k  for ( )u V G . Let ( , )G V E  

be a connected simple graph. The connectivity of G , denoted 

by ( )G , is the minimum number of vertices whose removal 

results in a disconnected graph or only one vertex left. A 

faulty set F V  is called a g-good-neighbor faulty set if 

| ( ) ( ) |N v V F g �  for v V F  � . A g-good-neighbor cut 

of a graph G  is a g-good-neighbor faulty set F  such that 

G F  is disconnected. The minimum cardinality of 

g -good-neighbor cuts is said to be the g-good-neighbor 

connectivity of G , denoted by ( ) ( )g G . For the terminology 

and notation which are not defined here, we follow [18].  

B. The PMC Model and the MM
*

 model 

In the PMC model [10], each processor (vertex) in the 

faulty diagnosis system can perform tests on its neighbors. 

For two adjacent vertices u  and v  in ( )V G , the ordered pair 

( , )u v  represents the test performed by u  on v . The test 

output is 1  or 0  which implies that the vertex being tested is 

faulty or fault-free. If the testing vertex is fault-free, then the 

test outputs are reliable; otherwise the outputs are unreliable. 

All the possible outputs of a test are shown in Table 

\ref{tab:test}. The result of all the tests is called a syndrome 

 . For a given syndrome  , a subset ( )F V G  is 

consistent with   if the syndrome   can be produced from 

the situation that, for any ordered pair ( , )u v  such that 

u V F � , ( , ) 1u v   if and only if v F . Let ( )F  

denote all syndromes which F  is consistent with. Under the 

PMC model, two distinct sets 
1F  and 

2F  of ( )V G  are said to 

be indistinguishable if 1 2( ) ( )F F   ; otherwise, 
1F  

and 2F  are said to be distinguishable. In other words, 

1 2( , )F F  is an indistinguishable pair if 1 2( ) ( )F F   ; 

otherwise, 1 2( , )F F  is a distinguishable pair. 

 

 

Table 1. Output of test under the PMC model 

Testing vertex Tested vertex Test output 

fault-free fault-free 0 

fault-free faulty 1 

faulty fault-free 0 or 1 

faulty  faulty 0 or 1 

 

In the MM model [10], a processor w  sends the same task 

to the pair of distinct neighbors, u  and v , and then compares 

their responses to diagnose a system G . The test, denoted by 

( , )wu v , implies that u  and v  are adjacent to w , i.e., w  can 

compare the responses from u  and v . The MM *  model is a 

special case of the MM model. If , , ( )w u v V G  and 

, ( )wu wv E G , then ( , )wu v  must be a test. All the possible 

outputs of a test are shown in Table \ref{tab:test2}. The 

collection of all the comparison results is called the syndrome 
*  of the diagnosis. For a given syndrome * , a faulty set 

( )F V G  is consistent with *  if and only if the following 

conditions are satisfied: 1. If ,u v F  and ( )w V G F � , 

then  *(( ; ) ) 1wu v  ; 2. If u F  and , ( )v w V G F � , then 

*(( , ) 1wu v  ; 3. If , , ( )u v w V G F � , then *(( , ) ) 0wu v  . 

The *  can be produced from F  and all the vertices in 

V F�  are fault-free. Since a faulty comparator can generate 

an unreliable result, a set of faulty vertices may produce 

different syndromes. Let * ( )F  denote all syndromes which 

F  is consistent with. Similarly to the PMC model, two 

distinct sets 
1F  and 

2F  in ( )V G  are said to be 

indistinguishable if 1 2( ) ( )F F   ; otherwise, 
1F  and 

2F  are said to be distinguishable. 

Table 2. Output of test under the MM *  model 

Testing vertex Tested vertex Test output 

fault-free fault-free, faulty-free 0 

fault-free faulty, fault-free(or faulty) 1 

faulty fault-free, fault-free 0 or 1 

faulty  faulty, fault-free(or faulty) 0 or 1 

 

A system ( , )G V E  is g-good-neighbor t -diagnosable if 

1F  and 
2F  are distinguishable, for each distinct pair of 

g -good-neighbor faulty subsets 
1F  and 

2F  of V  with 

1 2| |,| |F F t . The g-good-neighbor diagnosability ( )gt G  of 

G  is the maximum value of t  such that G  is 

g-good-neighbor t -diagnosable.  

C. The n -dimensional shuffle-cube 

As a variation of hypercubes nQ , the n-dimensional 

shuffle-cube nSQ , where 2 ( 4)n mod , is obtained from 

nQ  by changing some links. For nSQ , the vertex set of nSQ  

is represented by a set of n -bit binary string 

1 2 1 0n nu u u u u   . Let 1 2( )j n n n jp u u u u     and 

1 2 1 0( )i i is u u u u u   . The nSQ  is recursively defined as 

follows: 2SQ  is 2Q . For 3n , nSQ  consists of 16 graphs 

0000

4nSQ  , 
0001

4nSQ  ,  , 
1110

4nSQ   and 
1111

4nSQ  , where 1 2 3 4

4

i i i i

nSQ   for 
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{0,1}ji   and 1 4j   is obtained from 
4nSQ 

 by adding a 

4-bit binary string 
1 2 3 4i i i i  in the front of each vertex of 

4nSQ 
 

such  that 1 2 3 4

4 1 2 3 4 5 1 0 5 1 0( ) { :
i i i i

n n nV SQ i i i i u u u u u u       

4( )}nV SQ   and 1 2 3 4

4 1 2 3 4 5 1 0 1 2 3 4( ) {( ,
i i i i

n nE SQ i i i i u u u i i i i    

5 1 0 5 1 0 5 1 0 4) : ( , ) ( )}n n n nv v v u u u v v v E SQ      . 

The vertices 
1 2 1 0n nu u u u u    and 

1 2 1 0n nv v v v v    in 

different ( 4)n -dimensional graphs are linked by an edge in 

nSQ  if and only if 
4 4( ) ( )n ns u s v   and 

24 4 ( )( ) ( ) s up u p v V  , where the symbol   denotes the 

addition with modulo 2  and 

00 {1111,0001,0010,0011}V  ,
01 {0100,0101,0110,0111}V 

10 {1000,1001,1010,1011}V  , 
11 {1100,1101,1110,1111}V  . 

 
Figure 1. The Shuffle-cube 

6SQ . 

In Figure 1, we illustrate 
6SQ  with edges only incident to 

the vertices of 0000

2SQ . As in [17], let 4 2n k   and 

1 1 0

1 2 1 0 4 4 4 4

k k

n nu u u u u u u u u

    , where 0

4 1 0u u u  and 

4 4 1 4 4 1 4 2

j

j j j ju u u u u    for 1 j k  . Then the two vertices 

u  and v  of 
nSQ  are adjacent if and only if one of the 

following conditions holds: 

(1) 
* *

0
4

4 4

j j

u
u v V   for exactly one *j  satisfying 

*1 j k   and 4 4

j ju v  for all *0 j j k   ; 

(2) 0 0

4 4 {01,10}u v   and 4 4

j ju v  for all 1 j k  . 

Lemma 2.1.  [17] nSQ  is n-regular and n-connected. 

 

Lemma 2.2. [19] For 6n , the 1-good-neighbor 

connectivity of nSQ  is 2n-4, i.e., 
(1) ( ) 2 4nSQ n   . 

Lemma 2.3. [19] Let u  and v  be two adjacent vertices of 

nSQ . If 
0 0

4 4 00u v  , then | ( ) ( ) | 2N u N v  . If 
0

4 00u   or 

0

4 00v  , then | ( ) ( ) | 0N u N v  . 

Lemma 2.4. [6] Let u  and v  be two nonadjacent vertices of 

nSQ  such that ( , ) 2d u v  . If 0

4 00u   and  0

4 00v  , then 

| ( ) ( ) | 4N u N v  . If 
0

4 00u   or 
0

4 00v  , then 

| ( ) ( ) | 2N u N v  . 

Lemma 2.5. [6] Let u  and v  be two nonadjacent vertices 

with ( , ) 3d u v   in nSQ , then | ( ) ( ) | 0N u N v  . 

 

 

 

Table 3. The number of common neighbors of any vertex pair 

u  and v  

 ( , ) 1d u v   ( , ) 2d u v   

0 0

4 4 00u v   | ( ) ( ) | 2N u N v   | ( ) ( ) | 2N u N v   

0

4 00u  0

4 00v   | ( ) ( ) | 0N u N v   | ( ) ( ) | 2N u N v   

0

4 00u  0

4 00v   | ( ) ( ) | 0N u N v   | ( ) ( ) | 4N u N v   

III. THE 1-GOOD-NEIGHBOR DIAGNOSABILITY OF 

SHUFFLE-CUBES UNDER THE PMC MODEL AND MM* MDOEL 

In this section, we shall prove the 1-good-neighbor 

diagnosability of shuffle-cubes 
nSQ  under the PMC model 

and MM* model. Let 
1F  and 

2F  be two distinct subsets of 

( )V G . We define the symmetric difference 

1 2 1 2 2 1( ) ( )F F F F F F  � � . We first give two sufficient and 

necessary conditions for a system to be g-good-neighbor 

t -diagnosable under the PMC model and MM *  model. 

Theorem 3.1. [10] Under the PMC model, a system 

( , )G V E  is g-good-neighbor t -diagnosable if and only if 

there is an edge uv E  with 1 2( )u V F F �  and 

1 2v F F   for each distinct pair of g -good-neighbor faulty 

subsets 
1 2,F F  of ( )V G  with 

1 2| |,| |F F t  (see Fig. 2). 

 
Figure 2. Illustration of a distinguishable pair 1 2( , )F F  under 

the PMC model. 

Theorem 3.2. [10]Under the MM *  model, a system 

( , )G V E  is g -good-neighbor t -diagnosable if and only if 

each distinct pair of two g -good-neighbor faulty subsets 1F  

and 
2F  of ( )V G  with 

1 2| |,| |F F t  satisfies one of the 

following conditions (see Fig. 3). 

(1) There are two vertices 1 2, ( ) ( )u w V G F F �  and 

there is a vertex 
1 2v F F   such that ( )uw E G  and 

( )vw E G ; 

(2) There are two vertices 
1 2,u v F F �  and there is a 

vertex 1 2( ) ( )w V G F F �  such that ( )uw E G  and 

( )vw E G ; 

(3) There are two vertices 
2 1,u v F F �  and there is a 

vertex 1 2( ) ( )w V G F F �  such that ( )uw E G  and 

( )vw E G . 
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Fig.3. Illustration of a distinguishable pair 1 2( , )F F  

under the 
*MM  model. 

 

Lemma 3.1. For 6n , let 1 0

4 4 40000 000000 ku u u u   , 

2 1 0

4 4 4 4( )kv u u u e u   where 0001e  , { , }A u v , 

1 ( )F N A  and 
2 ( )F A N A  . Then 

1| | 2 4F n  , 

2| | 2 2F n  , 
1( ) 1nSQ F    and 

2( ) 1nSQ F   . 

 

Proof. By the definition of 
nSQ , ( )nuv E SQ . Note that 

0
4u

e V  and 0

4 00u  . By Lemma 2.3, | ( ) ( ) | 2N u N v  . 

Since ( ) ( ) {0000 001000,0000 001100}N u N v    , 

| ( ) ( ) | 2N u N v  . Thus, 

1| | | ( ) { }| | ( ) { }| | ( ) ( ) | 1 1 2 2 4F N u v N v u N u N v n n n          ‚ ‚

 and 
2 1| | | | | | 2 2F F A n    . Next, we will prove 

2( ) 1nSQ F   . 

 

Case 1. 6n  . 

Since 000000u   and 000100v  , we have 

1 ( ) {000010,000001,001000,001100,111100,000110,000101,111000}F N A 

. It is easy to see that 
6 2SQ F  is connected and 

6 2( ) 1SQ F   . Combing this with that 6( [ ]) 1SQ A  , we 

have 
6 1( ) 1SQ F   . 

Case 2. 10n  . 

Let w  be an arbitrary vertex of 
2nSQ F . By Lemma 2.4, 

| ( ) ( ) | 4N w N u   and | ( ) ( ) | 4N w N v  . Then 

1| ( ) | 8N w F  . Thus, 
2

| ( ) | 8 2
nSQ FN w n     for 10n  . 

This means 2( ) 1nSQ F   . Combing this with that 

( [ ]) 1nSQ A  , 
1( ) 1nSQ F   . 

The proof is complete. 

Lemma 3.2.  For 6n , the 1-good-neighbor diagnosability 

of nSQ  under the PMC model and MM *  model is less than 

2 2n , i.e., 1( ) 2 3nt SQ n  . 

Proof. Let A , 
1F  and 

2F  be defined as Lemma 3.1. By 

Lemma 3.1, 
1| | 2 4F n  , 

2| | 2 2F n  ,  
1( ) 1nSQ F    

and 2( ) 1nSQ F   . Thus, 1F  and 2F  are both 

1 -good-neighbor faulty sets of nSQ  with 1 2| |,| | 2 2F F n  . 

Since 1 2A F F   and 1 2( )F N A F  , there are no edges of 

nSQ  between 
1 2( ) ( )nV SQ F F�  and 

1 2F F . By Theorem 

3.1 and Theorem 3.2, we can deduce that nSQ  is not 

1 -good-neighbor (2 2)n -diagnosable under the PMC 

model and MM *  model. Therefore, by the definition of the 

1 -good-neighbor diagnosability, we can deduce that the 

1 -good-neighbor diagnosability of nSQ  under the PMC 

model and MM *  model is less than 2 2n , i.e., 

1( ) 2 3nt SQ n  . 

The proof is complete. 

Lemma 3.3. For 6n , the 1 -good-neighbor diagnosability 

of nSQ  under the PMC model is greater than or equal to 

2 3n , i.e., 1( ) 2 3nt SQ n  . 

 

Proof. By the definition of the 1 -good-neighbor 

diagnosability, it is sufficient to prove that 
nSQ  is 

1 -good-neighbor (2 3)n -diagnosable. To prove the 

statement, by Theorem \ref{T-g-good-t-diag}, it is equivalent 

to show that there exist two vertices 
1 2( ) ( )nu V SQ F F �  

and 
1 2v F F   such that ( )nuv E SQ  for each distinct pair 

of 1 -good-neighbor faulty subsets 
1F  and 

2F  of ( )nV SQ  

with 
1 2| |,| | 2 3F F n  . 

The proof proceeds by way of contradiction. By Theorem 

3.1, we suppose that there are two distinct 1 -good-neighbor 

faulty subsets 
1F  and 

2F  of ( )nV SQ  with 
1 2| |,| | 2 3F F n   

such that there are no edges between 
1 2( ) ( )nV SQ F F�  and 

1 2F F . Without loss of generality, we assume that 

2 1F F � . Suppose that 
1 2( )nV SQ F F  . By the 

definition of 
nSQ , | ( ) | 2n

nV SQ  . Then 

1 2 1 22 | | | | | | 2 3 2 3 4 6n F F F F n n n          . Since 

2 4 6n n   for 6n , this is a contradiction. Therefore, 

1 2( )nV SQ F F  . 

Since there are no edges between 
1 2( ) ( )nV SQ F F�  and 

1 2F F , 
1nSQ F  has two parts 1 2nSQ F F   and 

2 1[ ]nSQ F F�  (for convenience). Combing this with that 
1F  is 

a 1-good-neighbor faulty set, 1 2( ) 1nSQ F F    , 

2 1( [ ]) 1nSQ F F � , and 
2 1| | 2F F � . Similarly, 

1 2( [ ]) 1nSQ F F �  when 
1 2F F � . Thus, 

1 2F F  is a  

1-good-neighbor faulty set. Since there are no edges between 

1 2( ) ( )nV SQ F F�  and 
1 2F F , we have that 

1 2F F  is a 

1 -good-neighbor cut. By Theorem 2.2, 1 2| | 2 4F F n   . 

Then 2 2 1 1 2| | | | | | 2 2 4 2 2F F F F F n n       � , 

contradicting the supposition that 
2| | 2 3F n  . Therefore, 

nSQ  is 1 -good-neighbor (2 3)n -diagnosable, i.e., 

1( ) 2 3nt SQ n  . 

The proof is complete. 

Combining Lemma 3.2 and Lemma 3.3, we have the 

following theorem. 

 

Theorem 3.3 For 6n , the 1-good-neighbor diagnosability 

of nSQ  under the PMC model is 2 3n , i.e.,  

1( ) 2 3nt SQ n  . 

 

Lemma 3.4. For 6n , the 1-good-neighbor diagnosability 

of nSQ  under the MM *  model is greater than or equal to 

2 3n , i.e., 
1( ) 2 3nt SQ n  . 

 

Proof. By the definition of the 1-good-neighbor 

diagnosability, it is sufficient to show that nSQ  is 

1-good-neighbor (2 3)n -diagnosable. By Theorem 3.2, 

suppose, on the contrary, that there are two distinct  

1-good-neighbor faulty subsets 1F  and 2F  of nSQ  with 

1 2| |,| | 2 3F F n  , and the vertex set pair 1 2( , )F F  does not 
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satisfy with any one condition in Theorem 3.2. Without loss 

of generality, we  assume that 
2 1F F � . A similar 

argument on .
1 2( )nV SQ F F  . in Lemma 3.3 can be used to 

establish that 
1 2( )nV SQ F F  . Therefore, 

1 2( )nV SQ F F  . 

Claim 1. 
1 2nSQ F F   has no isolated vertex. 

 

Suppose, on the contrary, that 
1 2nSQ F F   has at least 

one isolated vertex w . Since 
1F  is a 1 -good-neighbor  faulty 

set, there is at least one vertex 
2 1u F F �  such that u  and w  

are adjacent. Note that the vertex set pair 
1 2( , )F F  does not 

satisfy with any one condition in Theorem 3.2. By the 

condition (3) of Theorem 3.2, there is at most one vertex 

2 1u F F �  such that u  and w  are adjacent. Thus, there is 

just one vertex 
2 1u F F �  such that u  and w  are adjacent. 

Similarly, there is just one vertex 
1 2v F F �  such that v  and 

w  are adjacent. Clearly, 
1 2F F � . Let 

1 2( ) ( )nW V SQ F F �  be the set of isolated vertices in 

1 2[ ( ) ( )]n nSQ V SQ F F�  and H  be the induced subgraph by 

the vertex set 1 2( ) ( )nV SQ F F W � . For any arbitrary 

vertex w W , there are ( 2)n  neighbors in 
1 2F F . Since 

2| | 2 3F n  , 

1 2

1 2

[ ] 1 2| ( ) | | | ( 2) ( ) | |
n nSQ F F SQ

w W v F F

N w W n d v n F F

  

     

2(| | 1) (2 4)n F n n    . Then | | 2W n . We assume that 

( )V H  . Then 1 2 1 2| ( ) | | | | | | | | |nV SQ F F W F F      

| | 2(2 3) 2 6 6 2nW n n n       for 6n , which is a 

contradiction to | ( ) | 2n

nV SQ  . So ( )V H  . 

Since H  contains no isolated vertex and 1 2( , )F F  does not 

satisfy with the condition (1) of Theorem 3.2, there are no 

edges between ( )V H  and 
1 2F F . Thus, 

1 2F F  is a vertex 

cut of nSQ . Since 
1F  is a 1 -good-neighbor faulty set of nSQ , 

we have that ( ) 1H   and 2 1( [ ( )]) 1nSQ W F F  � . 

Similarly, 2F  is a 1-good-neighbor faulty set of nSQ , we also 

have 1 2( [ ( )]) 1nSQ W F F  � . Then 

1 2 2 1( [ ( ) ( )]) 1nSQ W F F F F   � � . Note that 

1 2( )nSQ F F   has two parts (for convenience): H  and 

1 2 2 1[ ( ) ( )]nSQ W F F F F � � . Therefore, 
1 2F F  is a 

1 -good-neighbor vertex cut of nSQ . By Lemma 2.2, 

1 2| | 2 4F F n   . Since 1 2| |,| | 2 3F F n  , 

1 2 2 1| | | | 1F F F F � � . Let 2 1u F F �  and 1 2v F F � . By 

Lemma 2.3 and Lemma 2.4, | | | ( ) ( ) | 4W N u N v   . We 

consider the following cases. 

Case 1. 3 | | 4W  . 

Let 1 2 3{ , , }w w w W . Then 

1 2 1 2[ ] [ ] 1 2 3| ( ) | | ({ , , }) |
n nSQ F F SQ F FN W N w w w  . Suppose 

that ,u v  are adjacent. By Lemma 2.3,  ,u v  have at most two 

common neighbors. This means | | 2W  , which is a 

contradiction to 3 | | 4W  . So ,u v  are nonadjacent. Clearly, 

1 2 3 1 2( ) { , , }N u w w w F F � , 
1 2 3 1 2( ) { , , }N v w w w F F � , 

1 1 2( ) { , }N w u v F F � , 
2 1 2( ) { , }N w u v F F �  and 

3 1 2( ) { , }N w u v F F � . Suppose that 0

4 00u   or 0

4 00v  . 

By Lemma 2.4, | ( ) ( ) | 2N u N v  . This means | | 2W  , 

which is a contradiction to 3 | | 4W  . So 0

4 00u   and 

0

4 00v  . By Lemma 2.4, | ( ) ( ) | 4N u N v  , 

1 2| ( ) | | ( ) | 4N w N w  , 
1 3| ( ) | | ( ) | 4N w N w  , and 

2 3| ( ) | | ( ) | 4N w N w  . Since 
1 2 3, ,w w w  are three common 

neighbors of ,u v , we have 

1 2 1 2[ ] [ ]| ( ) ( ) | 1
n nSQ F F SQ F FN u N v   . By Lemma 2.3, we have 

| ( ) ( ) | 0iN u N w   and | ( ) ( ) | 0iN v N w  for 1,2,3i  . 

Then 

1 2 1 2 3 1 2 3| | | ( ) { , , }| | ( ) { , , }|F F N u w w w N v w w w   � �  

1 2 3| ( ) { , } | | ( ) { , }| | ( ) { , }|N w u v N w u v N w u v � ‚ �  

1 2 1 2[ ] [ ]

1 3

| ( ) ( ) | | ( ) ( ) |
n nSQ F F SQ F F i

i

N u N v N u N w 

 

     

1 2 1 2[ ] 1 [ ] 2

1 3

| ( ) ( ) | | ( ) ( ) |
n ni SQ F F SQ F F

i

N v N w N w N w 

 

     

1 2 1 2 1 2[ ] 1 [ ] 3 [ ] 2| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N w N w       

1 2[ ] 3( ) | 2 ( 3) 3 ( 2) 1 0 0 3 2
nSQ F FN w n n             

5 19n  . Thus, 

1 1 2 1 2| | | | | | 5 19 1 5 18 2 3F F F F F n n n         ‚  

for 6n , a contradiction to 1| | 2 3F n  . 

Case 2. | | 2W  . 

Let 1 2{ , }W w w . Then 1 1 2 2, , , ( )nw v wu w v w u E SQ . 

Case 2.1. ,u v  are adjacent. 

Clearly, 
1 2 1 2( ) { , , }N u w w v F F � , 

1 2 1 2( ) { , , }N v w w u F F � , 
1 1 2( ) { , }N w u v F F � , and 

2 1 2( ) { , }N w u v F F � . 

Suppose that 0

4 00u   or 0

4 00v  . By Lemma 2.3, 

| ( ) ( ) | 0N u N v  . This means | | 0W  , which is a 

contradiction to | | 2W  . So 0

4 00u   and 0

4 00v  . Suppose 

that 0

1 4[ ] 00w  . By Lemma 2.3, 1| ( ) ( ) | 0N u N w  . Since 

v  is a common neighbor of u  and 1w , this is a contradiction. 

So 0

1 4[ ] 00w  . Similarly,  0

2 4[ ] 00w  . By Lemma 2.3, 

| ( ) ( ) | 2N u N v  , 1| ( ) ( ) | 2N u N w  , 

2| ( ) ( ) | 2N u N w  , 
1| ( ) ( ) | 2N v N w  , and 

2| ( ) ( ) | 2N v N w  . Since 
1 2,w w  are two common 

neighbors of u  and v , 
1 2 1 2[ ] [ ]| ( ) ( ) | 0

n nSQ F F SQ F FN u N v   . 

By using the similar argument, we have 

1 2 1 2[ ] 1 [ ]| ( ) ( ) | 1
n nSQ F F SQ F FN w N u   , 

1 2 1 2[ ] 1 [ ]| ( ) ( ) | 1
n nSQ F F SQ F FN w N v   , 

1 2 1 2[ ] 2 [ ]| ( ) ( ) | 1
n nSQ F F SQ F FN w N u   , and 

1 2 1 2[ ] 2 [ ]| ( ) ( ) | 1
n nSQ F F SQ F FN w N v   . By Lemma 2.4, 

1 2| ( ) ( ) | 2N w N w  . Since ,u v  are two common neighbors 

of 1w  and 2w , 
1 2 1 2[ ] 1 [ ] 2| ( ) ( ) | 0

n nSQ F F SQ F FN w N w   . Then 

1 2| |F F
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1 2 1 2 1| ( ) { , , }| | ( ) { , , }| | ( ) { , }|N u w w v N v w w u N w u v  � � �  

1 2 1 22 [ ] [ ]| ( ) { , } | | ( ) ( ) |
n nSQ F F SQ F FN w u v N u N v   �

1 2 1 2 1 2[ ] 1 [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N u N w     

1 2 1 2 1 2[ ] [ ] 2 [ ]( ) | | ( ) ( ) |
n n nSQ F F SQ F F SQ F FN v N w N u      

1 2 1 2 1 2[ ] 2 [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N v N w    

1 2[ ] 2( ) | 2( 3) 2( 2) 0 4 1 0 4 14
nSQ F FN w n n n           . 

Thus, 

1 1 2 1 2| | | | | | 4 14 1 4 13\ 2 3F F F F F n n n           for 

6n , a contradiction to 
1| | 2 3F n  . 

Case 2.2. ,u v  are nonadjacent. 

Obviously, 
1 2 1 2( ) { , }N u w w F F � , 

1 2 1 2( ) { , }N v w w F F � , 
1 1 2( ) { , }N w u v F F � , and 

2 1 2( ) { , }N w u v F F � . 

Case 2.2.1. 6n  . 

Case 2.2.1.1. 0 0

4 4 00u v  . 

Since 6n   and 0 0

4 4 00u v  , we have 1 1

4 4u v . Suppose 

that 0

1 4[ ] 00w  . Since 1 6( )uw E SQ , by the definition of 

nSQ , 0 0

4 1 4[ ] {01,10}u w   and 1 1

4 1 4[ ]u w . Similarly, 

1 1

4 1 4[ ]v w . Thus, we have 1 1

4 4u v , which is a contradiction 

to 1 1

4 4u v . So 0

1 4[ ] 00w  . Similarly, 0

2 4[ ] 00w  . 

Meanwhile, 1 1 1

1 4 4 1 4 2[ ]w u e v e    , 

1 1 1

2 4 4 3 4 4[ ]w u e v e    , where 
1 2 3 4 00, , ,e e e e V . Since 

1 2,w w  are nonadjacent, we have 1 1

1 4 2 4 00[ ] [ ]w w V  , i.e., 

1 1

4 1 4 3 00( ) ( )u e u e V    . Since 1 1

4 4 0000u u  , we have 

1 3 00e e V  . Therefore, either 1 1111e   or 3 1111e  . 

Similarly, either 
2 1111e   or 

4 1111e  . Without loss of 

generality, we assume that 1 1111e  . Since 

1 1 1

1 4 4 1 4 2[ ]w u e v e     and 1 1

4 4u v , we have 2 1e e . This 

means  
2 1111e  . Then 4 1 1111e e   and 

2 3, {0001,0010,0011}e e  . Thus, 1

1 4( 1111)00w u   and 

1

2 4( 1111)00w v  . By the definition of nSQ , it is easy to 

see that 1| ( ) | ( ) | 0N w N u   and 2| ( ) | ( ) | 0N w N v  . 

Since 1

1 4 2( )00w v e   and 1

2 4 3( )00w u e  , we have 

1

1 4 2( ) ( ) {( )00), {0001,0010,0011}\{ }}i iN w N v v e e e    , 

and 
1

2 4 3( ) ( ) {( )00), {0001,0010,0011}\{ }}i iN w N u u e e e   

, i.e., 1| ( ) ( ) | 2N w N v   and 2| ( ) ( ) | 2N w N u  . By 

Lemma \ref{uv-nonadja-neighbor}, | ( ) ( ) | 2N u N v  . 

Since 1 2,w w  are two common neighbors of u  and v , 

1 2 1 2[ ] [ ]| ( ) ( ) | 0
n nSQ F F SQ F FN u N v   . Similarly, 

1 2 1 2[ ] 1 [ ] 2| ( ) ( ) | 0
n nSQ F F SQ F FN w N w   . Then 

1 2 1 2 1 2| | | ( ) { , }| | ( ) { , }|F F N u w w N v w w   � �  

1 2| ( ) { , }| | ( ) { , }|N w u v N w u v� �  

1 2 1 2 1 2[ ] 1 [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N v N w       

1 2 1 2 1 2[ ] [ ] 2 [ ]( ) | | ( ) ( ) |
n n nSQ F F SQ F F SQ F FN u N w N u   

1 2 1 2 1 2 1 2[ ] 2 [ ] [ ] [ ]| ( ) ( ) | | ( ) ( ) |
n n n nSQ F F SQ F F SQ F F SQ F FN w N v N u N v        

1 2 1 2[ ] 1 [ ] 2| ( ) ( ) | 4 ( 2) 2 0 2 0
n nSQ F F SQ F FN w N w n         

0 4 12n    . Thus, 

1 1 2 1 2| | | | | | 4 12 1 4 11 2 3F F F F F n n n         �  for 

6n  , which is a contradiction to 
1| | 2 3F n  . 

Case 2.2.1.2. 0

4 00u   and 0

4 00v  . 

By Lemma 2.4, | ( ) ( ) | 2N u N v   and 

1 2| ( ) ( ) | 4N w N w  . Since 
1 2,w w  are two common 

neighbors of u and v , 
1 2 1 2[ ] [ ]| ( ) ( ) | 0

n nSQ F F SQ F FN u N v   . 

Similarly, 
1 2 1 2[ ] 1 [ ] 2| ( ) ( ) | 2

n nSQ F F SQ F FN w N w   . By Lemma 

2.3, 
1| ( ) ( ) | 2N u N w  , 

2| ( ) ( ) | 2N u N w  , 

1| ( ) ( ) | 0N v N w  , and 
2| ( ) ( ) | 0N v N w  . Thus, 

1 2 1 2 1 2 1| | | ( ) { , }| | ( ) { , }| | ( )F F N u w w N v w w N w   � � � 

1 2 1 22 [ ] 1 [ ]{ , } | | ( ) { , } | | ( ) ( ) |
n nSQ F F SQ F Fu v N w u v N w N u   �  

1 2 1 2 1 2[ ] 1 [ ] [ ] 2| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N v N w      

1 2 1 2 1 2[ ] [ ] 2 [ ]( ) | | ( ) ( ) |
n n nSQ F F SQ F F SQ F FN u N w N v      

1 2 1 2 1 2[ ] [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN u N v N w       

1 2[ ] 2( ) | 4 ( 2) 2 0 2 0 0 2 4 14
nSQ F FN w n n            . 

Thus, 

1 1 2 1 2| | | | | | 4 14 1 4 13 2 3F F F F F n n n         ‚  

for 6n  , which is a contradiction to 1| | 2 3F n  . 

Case 2.2.1.3. 0

4 00u   and 0

4 00v  . 

By Lemma 2.3, 1| ( ) ( ) | 0N u N w  , 2| ( ) ( ) | 0N u N w  , 

1| ( ) ( ) | 0N v N w  , and 2| ( ) ( ) | 0N v N w  . By Lemma 2.4, 

| ( ) ( ) | 4N u N v  . Since 
1 2,w w  are two common neighbors 

of u  and v , 
1 2 1 2[ ] [ ]| ( ) ( ) | 2

n nSQ F F SQ F FN u N v   . Similarly, 

1 2 1 2[ ] 1 [ ] 2| ( ) ( ) | 2
n nSQ F F SQ F FN w N w   . Then 

1 2 1 2 1 2| | | ( ) { , }| | ( ) { , }|F F N u w w N v w w  � �  

1 21 2 [ ] 1| ( ) { , } | | ( ) { , } | | ( )
nSQ F FN w u v N w u v N w   � �  

1 2 1 2 1 2[ ] [ ] 1 [ ]( ) | | ( ) ( ) |
n n nSQ F F SQ F F SQ F FN u N w N v      

1 2 1 2 1 2 1 2[ ] 2 [ ] [ ] 2 [ ]| ( ) ( ) | | ( ) ( ) |
n n n nSQ F F SQ F F SQ F F SQ F FN w N u N w N v     

1 2 1 2 1 2[ ] 1 [ ] 2 [ ]| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N w N u       

1 2[ ] ( ) | 4 ( 2) 4 0 2 2 4 12
nSQ F FN v n n          . Thus, 

1 1 2 1 2| | | | | | 4 12 1 4 11 2 3F F F F F n n n         �  for 

6n  , which is a contradiction to 1| | 2 3F n  . 

Case 2.2.2. 10n  . 

By Lemma 2.3, 1| ( ) ( ) | 2N w N u  , 
1| ( ) ( ) | 2N w N v  , 

2| ( ) ( ) | 2N w N u  , and 2| ( ) ( ) | 2N w N v  . By Lemma 

2.4, | ( ) ( ) | 4N u N v   and 1 2| ( ) ( ) | 4N w N w  . Since 

,u v are two common neighbors of 
1w  and 

2w , we have that 

1 2 1 2[ ] 1 [ ] 2| ( ) ( ) | 2
n nSQ F F SQ F FN w N w   . Similarly, 

1 2 1 2[ ] [ ]| ( ) ( ) | 2
n nSQ F F SQ F FN u N v   . Then 

1 2 1 2 1 2 1| | | ( ) { , }| | ( ) { , }| | ( ) { , }|F F N u w w N v w w N w u v   � � �

1 2 1 22 [ ] 1 [ ]| ( ) { , } | | ( ) ( ) |
n nSQ F F SQ F FN w u v N w N v   �

1 2 1 2 1 2[ ] 1 [ ] [ ] 2| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N u N w    

1 2 1 2 1 2[ ] [ ] 2 [ ]( ) | | ( ) ( ) |
n n nSQ F F SQ F F SQ F FN u N w N v    
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1 2 1 2 1 2[ ] [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN u N v N w     

1 2[ ] 2( ) | 4( 2) 4 2 2 2 4 20
nSQ F FN w n n         . 

Thus, 

1 1 2 1 2| | | | | | 4 20 1 4 19 2 3F F F F F n n n         �  

for 10n  , which is a contradiction to 
1| | 2 3F n  . 

Case 3. | | 1W  . 

Let 
1{ }W w . Then 

1 1, ( )nw u w v E SQ . 

Case 3.1. ,u v  are adjacent. 

Clearly, 
1 1 2( ) { , }N u w v F F � , 

1 1 2( ) { , }N v w u F F � , 

and  
1 1 2( ) { , }N w u v F F � . By Lemma 2.3, 

| ( ) ( ) | 2N u N v  . Since 
1w  is one common neighbor of u  

and v , 
1 2 1 2[ ] [ ]| ( ) ( ) | 1

n nSQ F F SQ F FN u N v   . Similarly,  

1 2 1 2[ ] [ ] 1| ( ) ( ) | 1
n nSQ F F SQ F FN u N w    and 

1 2 1 2[ ] [ ] 1| ( ) ( ) | 1
n nSQ F F SQ F FN v N w   . Then 

1 2 1 1 1| | | ( ) { , }| | ( ) { , }| | ( ) { , }|F F N u w v N v w u N w u v   � � �

1 2 1 2 1 2[ ] 1 [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N v N w     

1 2 1 2 1 2[ ] [ ] [ ]( ) | | ( ) ( ) | 3( 2) 3
n n nSQ F F SQ F F SQ F FN u N u N v n      

1 3 9n   . Thus, 

1 1 2 1 2| | | | | | 3 9 1 3 8 2 3F F F F F n n n         �  for 

6n , a contradiction to 1| | 2 3F n  . 

Case 3.2. ,u v  are nonadjacent. 

Clearly, 
1 1 2( ) { }N u w F F � , 1 1 2( ) { }N v w F F � , 

and 
1 1 2( ) { , }N w u v F F � . 

Case 3.2.1.  0

4 00u   and 0

4 00v  . 

By Lemma \ref{uv-nonadja-neighbor}, | ( ) ( ) | 2N u N v  . 

Since 
1w  is one common neighbor of ,u v , 

1 2 1 2[ ] [ ]( ) ( ) 1
n nSQ F F SQ F FN u N v   . By Lemma 2.3, 

1 2 1 2[ ] 1 [ ]| ( ) | ( ) | 2
n nSQ F F SQ F FN w N u   . Similarly, 

1 2 1 2[ ] 1 [ ]| ( ) | ( ) | 2
n nSQ F F SQ F FN w N v   . Then 

1 2 1 1 1| | | ( ) { }| | ( ) { }| ( ) { , }F F N u w N v w N w u v   � � �  

1 2 1 2 1 2[ ] 1 [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N u N w       

1 2 1 2 1 2[ ] [ ] [ ]( ) | | ( ) ( ) | 1 1
n n nSQ F F SQ F F SQ F FN v N u N v n n         

2 2 2 1 3 9n n       . Thus, 1 1 2 1 2| | | | | |F F F F F   �  

3 9 1 3 8 2 3n n n        for 6n , a contradiction to 

1| | 2 3F n  . 

Case 3.2.2.  
0

4 00u   and 
0

4 00v  . 

By Lemma \ref{uv-nonadja-neighbor}, ( ) ( ) 2N u N v  . 

Since 
1w  is one common neighbor of u  and v , 

1 2 1 2[ ] [ ]( ) ( ) 1
n nSQ F F SQ F FN u N v   . By Lemma 2.3, 

1| ( ) ( ) | 2N u N w   and 
1| ( ) ( ) | 0N v N w  . Then 

1 2 1 1 1| | | ( ) { }| | ( ) { }| | ( ) { , }|F F N u w N v w N w u v    � � �  

1 2 1 2 1 2[ ] 1 [ ] [ ] 1| ( ) ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N u N w      

1 2 1 2 1 2[ ] [ ] [ ]( ) | | ( ) | ( ) | 1 1
n n nSQ F F SQ F F SQ F FN v N u N v n n        

2 0 2 1 3 7n n      . Thus, 1 1 2 1 2| | | | | |F F F F F   �   

3 7 1 3 6 2 3n n n        for 6n , a contradiction to 

1| | 2 3F n  . 

Case 3.2.3.  0

4 00u   and 0

4 00v  . 

By Lemma 2.4, | ( ) ( ) | 4N u N v  . Since 
1w  is one 

common neighbor of u  and v , 

1 2 1 2[ ] [ ]( ) ( ) 3
n nSQ F F SQ F FN u N v   . By Lemma 2.3, 

1| ( ) ( ) | 0N u N w   and 
1| ( ) ( ) | 0N v N w  . Then 

1 2 1 1 1| | | ( ) { }| | ( ) { }| | ( ) { , }|F F N u w N v w N w u v   � � �  

1 2 1 2 1 2[ ] 1 [ ] [ ] 1| ( ) | ( ) | | ( )
n n nSQ F F SQ F F SQ F FN w N u N w       

1 2 1 2 1 2[ ] [ ] [ ]| ( ) | | ( ) ( ) | 1 1
n n nSQ F F SQ F F SQ F FN v N u N v n n n        

2 0 0 3 3 7n      . Thus, 

1 1 2 1 2| | | | | | 3 7 1 3 6 2 3F F F F F n n n         �  for 

6n ,  a contradiction to 
1| | 2 3F n  . 

Therefore, 
1 2nSQ F F   has no isolated vertex. The proof 

of Claim 1 is complete. 

Let 
1 2( ) ( )nw V SQ F F � . By Claim 1, w  has at least 

one neighbor in 
1 2nSQ F F  . Note that the vertex set pair 

1 2( , )F F  does not satisfy with any one condition of Theorem 

3.2. By the condition (1) of Theorem 3.2, for any pair of 

adjacent vertices 1 2, ( ) ( )nw u V SQ F F � , there is no 

vertex 
1 2v F F   such that ( )nwv E SQ . It follows that u  

has no neighbor in 
1 2F F . By the arbitrariness of w , there 

are no edges between 
1 2( ) ( )nV SQ F F�  and 

1 2F F . If 

1 2F F  , then 1 2 1 2F F F F   . This means 
nSQ  is not 

connected, a contradiction. Therefore, 
1 2F F   and 

1 2F F  is a vertex cut of 
nSQ . Since 

1F  is a 

1 -good-neighbor faulty set and 
2 1F F � , we have that 

1 2( [ ]) 1n nSQ SQ F F     and 
2 1( [ ]) 1nSQ F F � . Suppose 

that 
1 2F F � . Then 1 2 1F F F  . Since 

1F  is a 

1-good-neighbor faulty set of 
nSQ , we have that 

1 2 1F F F   is a 1-good-neighbor faulty set of 
nSQ . Since 

there is no edge between 
1 2( ) ( )nV SQ F F�  and 2 1F F� , we 

can deduce that 1 2 1F F F   is a 1 -good-neighbor cut of 

nSQ . Suppose that 
1 2F F � . Note that 1 2( )nSQ F F   

has three parts (for convenience): H , 
1 2[ ]nSQ F F�  and 

2 1[ ]nSQ F F� . Since 1 2,F F  are two 1-good-neighbor faulty 

sets of nSQ , ( ) 1H  , 
1 2( [ ]) 1nSQ F F �  and 

2 1( [ ]) 1nSQ F F � . Obviously, 2 1| | 2F F � . Thus, 1 2F F  

is a 1-good-neighbor cut of nSQ . By Theorem 2.2, 

1 2| | 2 4F F n   . Then 

2 2 1 1 2| | | | | | 2 2 4 2 2F F F F F n n       � , which 

contradicts 
2| | 2 3F n  . Therefore, nSQ  is 

1-good-neighbor (2 3)n -diagnosable, i.e., 

1( ) 2 3nt SQ n  . 

The proof is complete. 

Combining Lemma 3.2 and Lemma 3.4, we have the 

following theorem. 

 

Theorem 3.4. For 6n , the 1 -good-neighbor 

diagnosability of nSQ  under the MM *  model is 2 3n , i.e., 
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1( ) 2 3nt SQ n  . 

IV. CONCLUSIONS 

In this paper, we investigate the problem of the 

1-good-neighbor diagnosability of the n -dimensional 

shuffle-cube 
nSQ . We determine that the 1-good-neighbor 

diagnosability of 
nSQ  under the PMC model and MM *  

model is 2 3n  for 6n  . This work will not only help 

researchers to discuss g -good-neighbor diagnosability of 

nSQ  for 2g  , but also help engineers to develop more 

different measures of the 1-good-neighbor diagnosability 

based on application environment and statistics related to 

faulty patterns. 
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