Adaptive Controller Design for the Air-to-Air Missile Uncertain System

Yanjun Liang, Junqi Liang, Zhongsheng Wang

Abstract—The guidance and control problem of the air-to-air missile system is studied. A nonlinear, coupling dynamic model of the air-to-air missile with six degrees of freedom is investigated, and an uncertain control system is proposed according to some assumptions and simplifications. In order to make the closed loop of the air-to-air missile control system globally uniformly asymptotic stable and the output of the closed loop control system asymptotically approach zero, based on adaptive control theory, an adaptive control law for uncertain parameters and a controller for the air-to-air missile are designed. Numerical simulations show that the control system proves the correctness and has preferably tracking performance and illustrate the effectiveness of the proposed controller.

Index Terms—adaptive controller design, air-to-air missile system, dynamic model, uncertain system.

I. INTRODUCTION

The common methods in the integrated design of missile guidance and control include sliding mode control, backstepping design, feedback linearization and robust parameterization. But it is difficult to get analytical form of the control law using the sliding mode control method for maneuver target and unstable aerodynamic. The complexity of the control algorithm will increase with the order number increase sharply using backstepping design. Feedback linearization method needs accurate object model. Robust parameterization approach must establish a complete parametric system meeting the performance index of control law. Therefore, these methods are limited in practical application. Especially for the case of arbitrary maneuvering target and gust disturbance, the system is nonlinear, coupled and uncertain. The above methods are difficult to meet the system requirements. In recent years, due to the fast response, insensitivity to system parameters and external disturbances, simple algorithm and strong robustness, the optimal control method has attracted much attention in the integrated design of guidance and control.

In recent years, due to the fast response, insensitivity to system parameters and external disturbances, algorithm simpleness and strong robustness, Lyapunov direct method has attracted much attention in the integrated design of guidance and control. Shtessel et al. studied the integrated guidance and control problem based on first order, two order and higher order sliding mode control [1-3]. Shima and Idan et al. [4-6] established the direct connection between the control input and the control target with the zero miss distance as the sliding surface, and design the integrated controller. Nathan et al. [7-8] took the predicted collision point error as the sliding mode surface, and use the finite time convergence of the sliding mode state to meet the required constraints, and propose an integrated sliding mode control method.

The guidance and control problem of the air-to-air missile system is studied. A nonlinear, coupling dynamic model of the air-to-air missile with six degrees of freedom is investigated, and an uncertain control system is proposed according to some assumptions and simplifications. Then, based on adaptive control theory, an adaptive control law for uncertain parameters and a controller for the air-to-air missile are designed. Numerical simulations show that the control system proves the correctness and has preferably tracking performance and illustrate the effectiveness of the proposed controller.

II. DYNAMICAL SYSTEM MODEL

The research object of this paper is the air-to-air missile that uses aerodynamic layout with aerodynamic force / thrust vector composite control system, and in the active phase can use thrust vector control rudder or air rudder. Because the aerodynamic configuration of the missile uses normal pneumatic layout, so the aerodynamic characteristics of the missile rudder is simple. Considering this characteristic, the aerodynamic contribution of the air rudder is simply considered as a linear function of the rudder deflection angle. In addition, the influence of aerodynamic torsion angle on aerodynamic forces can be neglected without considering the aerodynamic coupling characteristics at high angles of attack.

Based on the above considerations, in order to make the motion equation of the missile with six degrees of freedom not too complex, the following assumptions should be made:
1) The elastic mode of the missile is neglected, and the missile is considered as a rigid body.
2) Assuming that the thrust force of the engine is constant, and the force provided by the thrust vector deflection is only involved in the longitudinal and lateral motions of the missile. Thrust vector control actuator model assuming it thrust size is constant and assuming that only in the pitch and yaw plane surface deflection of thrust vector, and use two kinds of actuator to complete the two deflection (not from the rolling control system).
3) Ignoring the influence of gravity, considering only the
action force and thrust force of the control force and thrust vector, and the influence of gravity can easily be compensated.

4) Due to the short time of compound control turn, the missile is considered to be in short period motion, and the missile, rotation inertia and velocity are considered constant.

5) The center of mass of missile remains unchanged.

The aerodynamic force / thrust vector composite control system of the missile is as follows:

\[
\dot{\alpha} = \omega_1 - \omega_1 \tan \beta \cos \alpha + \omega_2 \tan \beta \sin \alpha - qS(C_x \alpha + C_\delta \delta \cos \alpha) \frac{mV \cos \beta}{mV} + P \frac{\sin \alpha}{mV} + \frac{P \delta_y \cos \alpha}{mV} + \frac{qS \cos \alpha \sin \beta}{mV} C_y - \frac{P \alpha \sin \beta}{mV} + \frac{qS(C_y \beta + C_\delta \delta \cos \alpha)}{mV} + \frac{P \delta_x \sin \beta}{mV} + \frac{P \delta_y \cos \alpha}{mV}
\]

\[
\dot{\beta} = \omega_2 \sin \alpha + \omega_3 \cos \alpha + qS(C_x \alpha + C_\delta \delta \cos \alpha) \frac{mV \cos \beta}{mV} + P \frac{\sin \alpha}{mV} + \frac{P \delta_y \cos \alpha}{mV} + \frac{qS \cos \alpha \sin \beta}{mV} C_y - \frac{P \alpha \sin \beta}{mV} + \frac{qS(C_y \beta + C_\delta \delta \cos \alpha)}{mV} + \frac{P \delta_x \sin \beta}{mV} + \frac{P \delta_y \cos \alpha}{mV}
\]

\[
\dot{\gamma} = \omega_1 - \omega_1 \tan \beta \cos \alpha + \omega_2 \tan \beta \sin \alpha - qS(C_x \alpha + C_\delta \delta \cos \alpha) \frac{mV \cos \beta}{mV} + P \frac{\sin \alpha}{mV} + \frac{P \delta_y \cos \alpha}{mV} + \frac{qS \cos \alpha \sin \beta}{mV} C_y - \frac{P \alpha \sin \beta}{mV} + \frac{qS(C_y \beta + C_\delta \delta \cos \alpha)}{mV} + \frac{P \delta_x \sin \beta}{mV} + \frac{P \delta_y \cos \alpha}{mV}
\]

\[
\dot{\delta}_x = \omega_4 - \omega_4 \tan \beta \cos \alpha + \omega_5 \tan \beta \sin \alpha - qS(C_x \alpha + C_\delta \delta \cos \alpha) \frac{mV \cos \beta}{mV} + P \frac{\sin \alpha}{mV} + \frac{P \delta_y \cos \alpha}{mV} + \frac{qS \cos \alpha \sin \beta}{mV} C_y - \frac{P \alpha \sin \beta}{mV} + \frac{qS(C_y \beta + C_\delta \delta \cos \alpha)}{mV} + \frac{P \delta_x \sin \beta}{mV} + \frac{P \delta_y \cos \alpha}{mV}
\]

\[
\dot{\delta}_y = \omega_5 \sin \alpha + \omega_6 \cos \alpha + qS(C_x \alpha + C_\delta \delta \cos \alpha) \frac{mV \cos \beta}{mV} + P \frac{\sin \alpha}{mV} + \frac{P \delta_y \cos \alpha}{mV} + \frac{qS \cos \alpha \sin \beta}{mV} C_y - \frac{P \alpha \sin \beta}{mV} + \frac{qS(C_y \beta + C_\delta \delta \cos \alpha)}{mV} + \frac{P \delta_x \sin \beta}{mV} + \frac{P \delta_y \cos \alpha}{mV}
\]

\[
\dot{\delta}_z = \omega_6 \sin \alpha + \omega_7 \cos \alpha + qS(C_x \alpha + C_\delta \delta \cos \alpha) \frac{mV \cos \beta}{mV} + P \frac{\sin \alpha}{mV} + \frac{P \delta_y \cos \alpha}{mV} + \frac{qS \cos \alpha \sin \beta}{mV} C_y - \frac{P \alpha \sin \beta}{mV} + \frac{qS(C_y \beta + C_\delta \delta \cos \alpha)}{mV} + \frac{P \delta_x \sin \beta}{mV} + \frac{P \delta_y \cos \alpha}{mV}
\]

in which, \( \epsilon \) denotes the dip angle at the very moment.

Choose state variables for the air-to-air missile control system (2) in the following:

\[
\begin{aligned}
\dot{x} &= \dot{\epsilon}, \quad \alpha, \quad \omega, \quad \dot{\omega} \\
\dot{u} &= \delta_x \\
\dot{y} &= \dot{x}_i
\end{aligned}
\]

and the system (2) is rewritten in the state-space representation:

\[
\dot{x} = 
\begin{bmatrix}
a_{11} & a_{12} & 0 \\
0 & a_{22} & 0 \\
0 & a_{32} & a_{33}
\end{bmatrix}
x + 
\begin{bmatrix}
0 \\
0 \\
\Delta_1
\end{bmatrix}
+ 
\begin{bmatrix}
\Delta_2 \\
\Delta_3
\end{bmatrix}
\]

in which, \( \Delta_1, \Delta_2, \Delta_3 \) are bounded unknown uncertain parameters; \( R \) represents relative distance between the missile and target; and

\[
\begin{aligned}
a_{11} &= -\frac{2R}{R}, \quad a_{12} = -\frac{57.3qSC_{\gamma} + P}{mR}, \\
a_{22} &= -\frac{57.3qSC_{\gamma} + P}{mV}, \quad a_{32} = \frac{57.3qSLm_{\gamma}^{n}}{J_z}, \\
a_{33} &= \frac{qSLm_{\gamma}^{n}}{J_z} \times \frac{57.3qSLm_{\gamma}^{n}}{J_z}
\end{aligned}
\]

The aim of this paper is to design an appropriate controller for the uncertain control system (4), which makes the closed loop control system (4) globally uniformly asymptotic stable and the output of the closed loop control system (4) asymptotically approach zero.

### III. Adaptive Controller Design

In order to compensate the influence of uncertain parameters \( \Delta_i \) (i=1,2,3) in the air-to-air missile control system (4), we construct adaptive parameters \( \hat{\Delta}_i(t) \) (i=1,2,3):

\[
\hat{\Delta}_i(t) = \Delta_i - \Delta_i(t),
\]

in which, \( \hat{\Delta}_i(t) \) (i=1,2,3) are estimations for \( \Delta_i \) (i=1,2,3), and \( \Delta_i(t) \) (i=1,2,3) are errors.

We design adaptive controller and adaptive control laws for the air-to-air missile control system (4) as following:
\[ u = \frac{1}{b_i} (a_{i1} x_i x_2 + x_i \dot{\Delta}_i + x_2 \Delta_i) \\
+ a_{i2} x_i x_3 + a_{i3} x_3^2 + x_3 \dot{\Delta}_i) \]

(7)

\[ \dot{\Delta}_i = x_i, \]
\[ i = 1, 2, 3. \]

**Theorem 1** Controller and adaptive control law in (7) make the air-to-air control system (4) globally uniformly asymptotic stable.

**Proof** Take a Lyapunov function as following

\[ V = \frac{1}{2} (\sum_{i=1}^{3} \dot{x}_i^2 + \sum_{i=1}^{3} \dot{\Delta}_i) \]

(8)

for the air-to-air missile control system (4), and its derivative along the systems (4) is as follows

\[ \dot{V} = \sum_{i=1}^{3} \ddot{x}_i \dot{x}_i + \sum_{i=1}^{3} \ddot{\Delta}_i \dot{\Delta}_i, \]

\[ = a_{i1} x_i^2 + a_{i2} x_i x_2 + x_i \dot{\Delta}_i + a_{i3} x_2^2 \\
+ x_2 \Delta_i + a_{i4} x_3 x_3 + a_{i5} x_3^2 \\
+ x_3 \dot{\Delta}_i + b_i \dot{u} - \sum_{i=1}^{3} \Delta_i \Delta_i \]

(9)

According Lyapunov stability theory, control system (4) is globally uniformly asymptotic stable.

**IV. NUMERICAL EXPERIMENT**

To verify the effectiveness of the integrated guidance and control law, numerical experiment is carried out for the proposed controller. The results are given in Fig.1- Fig.3.

Our aim is to make the closed loop of the air-to-air missile control system globally uniformly asymptotic stable and the output of the closed loop control system asymptotically approach zero. It can be seen form Fig.1- Fig.3 that the proposed controller has the advantages of short interception time, little target missing. The rudder deflection angle of the missile varies smoothly throughout the flying process, the variation of the attack angle and sideslip angle is also stable, and the amplitude of the fluctuation is also small. Especially in the near impact point, the missile's rudder angle and the angle of attack and sideslip angle without divergent trend. Therefore, the proposed controller is efficient, real-time and robust for the air-to-air missile control system.

**V. CONCLUSION**

In this paper, the guidance and control problem of the air-to-air missile system is studied. A nonlinear, coupling dynamic model of the air-to-air missile with six degrees of freedom is investigated, and an uncertain control system is proposed according to some assumptions and simplifications. Then, based on adaptive control theory, an adaptive control law for uncertain parameters and a controller for the air-to-air missile are designed. Numerical simulations show that the control system proves the correctness and has preferably tracking performance and illustrate the effectiveness of the proposed controller.

**ACKNOWLEDGMENT**

This work was supported in part by Nature Science Foundation of China (No. 11301009 and No. U1204402), Science and Technology Key Project of Henan Province (112102210126) and Natural Science Foundations of Henan Province Education Department (No. 12A120001, No. 13A520018, No. 13A520017 and No. 13A110022).

**REFERENCES**


Adaptive Controller Design for the Air-to-Air Missile Uncertain System


Yan-Jun Liang, was born in 1981, received his Ph.D. from Ocean University of China in the year of 2010, and majored at computer application. He is an associate professor in School of Computer and Information Engineering of Anyang Normal University in China. His recent research interests include nonlinear system and time-delay system control.

Junqi Liang, received his master degree from China University of Mining and Technology. He is an engineer in General Teaching Office, Shanghai Sunking Construction Management & Consulting Co. ltd. in China. His recent research interests include civil engineering, nonlinear system control and application.

Zhong-Sheng Wang, received his Ph.D. from Huazhong University of Science and Technology. He is a professor in Department of Automation of Guangdong Polytechnic Normal University in China. His recent research interests include nonlinear system and time-delay system control.