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Abstract- Low dimensional transmission coefficient as a main 

transport factor need to be explored in this work the 

transmission coefficient for multi potential barriers is 

investigated. All theoretical expressions such as height, width of 

potential barriers, distance between them and carrier property 

are included to have exact value of transmission coefficient. 

Additionally, as it is required in many electronic devices to 

specify conductance of component the exact determination of 

transmission coefficient especially for graphene based devices is 

analyzed. Non-isotropic character of transmission coefficient 

causes to have some extension on Land Auer formalism to 

derive more accurate expression on graphene based transistors. 

Finally based on the proposed model the temperature effect on 

device characteristics is discussed.   

In this paper transmission coefficient of the schottcky structure 

in the graphene based transistor is modeled based on the width 

of semiconducting channel and then its quantum properties due 

to the dependence on structural parameter are analyzed. 

 

Index Terms : Transmission Coefficient, Graphene Nanoribbon, 

Double barrier, Quantum current, Temperature. 

 

I. INTRODUCTION 

  quantum well structures as a result of confining in the 

direction of confinement due to quantization of carriers so a 

series of energy states and related sub-bands will be formed 

consequently. The numerical computation of Transmission 

coefficient established by Chandra [15], Christo moulids [16] 

and later by Scandals [17] but they were not considering the 

effect of material parameters after a while it was recognized 

by Chang [18] Read [19]. They One of the most unique 

concepts in the quantum field is Tunneling particle [1] which 

has been studied from its conception level to experimental 

achievements extensively [43].  

This astounding properties of material and tunneling of 

charge carriers have been employed in scanning tunneling 

microscopy, tunneling of magnetic resistance, Josephson 

tunneling and so many other physical event. It is based upon 

transmission of charged particles through quantum barriers.  

It is so difficult to solve the Schrodinger equation exactly for 

any random and complicated potentials.  
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Tunneling of particles among all those forbidden regions can 

be considered as another consequence of quantum mechanics. 

It is obvious that utilization of this unique phenomena, 

electron tunneling, has been placed at the center scope of 

numerous Biological Molecular model [2, 3, 4] and also it is 

the key point of modern technology specially for electronic 

devices [5, 6, 7, 8, 9, 10]. Esaki and Tzu offered symmetric 

double barrier structure for semiconductor materials and has 

made pioneer work [11, 12, 13] in which the transportation of 

electrons proceed by means of resonant tunneling 

mechanism. After this step the super lattices [14] has been 

suggested in which it provides multiple started to study all 

those different material parameters separately to investigate 

resonant tunneling probability in semiconductor double 

barrier structure independently. In this path Wessel [20] 

calculated these problems for GaAs/AlxGa1-xAs 

composition for thin barrier. 

For computation of electrical parameters of quantum well 

structures in which discontinuity of conduction band and 

envelope function approximation [21], it influences Eigen 

states, and consequently tunneling current have been effected 

with non-parabolic band structure so this should be 

considered as one of the most important feature. As tailoring 

transport properties is considered to obtain displacement of 

energy levels from band edge of 1-D confined structures thus 

first-order non-parabolic energy vs. K relationship plays a 

major role to calculate transmission coefficient and current 

density if the physical parameters of device would be 

included in order to get rid of these data it should be taken 

into account for each step of mathematical modeling and 

computation. The influence of conduction band 

non-parabolic on Eigen energies has been studied by Miller 

[22] by using Kane's two-band modeling and also Hiroshima 

[23] has considered non parabolic factor as a function of 

those models with ultrathin layers parameter. In this area one 

of the important items is NP effect on transmission 

probabilities which has been studied by Nelson [24] who 

considered energy-dependent effective mass and Dave [25] 

who used finite element method for more precise estimation 

[26]. By several numerical analysis techniques such as 

variation Method [27], airy's function approach [28,29], finite 

element method (FEM) [30], transfer matrix Technique 

(TMT) [31] and Weighted potential method(WPM) [28] the 

double barrier resonant tunneling structure can be computed. 

Among these mentioned techniques TMT can be considered 

one of the most effective and accurate methods and also most 

of the researchers rely on this typically. According to the 
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estimation theory about tunneling resonance while applying 

field on these devices [30, 32] the transmission coefficient 

and tunneling current can be obtained. 

As obtaining transmission coefficient is one important and 

necessary stage based on calculation of the intensity of 

electrical current or measuring conductance of various 

electronic devices [33] such as graphene super lattices [34] or 

some filters including with or without disorder [35]. As 

carrier transporting through these sorts of devices is 

anisotropic phenomenon so it provides ease of fabrication of 

electronic circuits for example ignoring any etching or cutting 

step. Computing transmission coefficient in an analytical 

expression for different potential barriers are in our scope of 

interest, however, it can be calculated by different methods 

such as S-matrix which is one of the most appropriate 

techniques for multiple barrier conditions. 

 
Figure (1): Schematic of three metallic graphene, connecting 

three pieces of GNR by two bridge semiconductors which 

each coupled make a schottcky Twin barrier 

As shown in figure (1) in the proposed structure with two 

semiconducting channel is modulated and connected to drain 

and source terminal by three metallic graphene which make a 

schottcky twin barrier and through the source and drain at the 

graphene–metal interface in a transistor [36]. The proposed 

structure can be divided in to 5 regions as shown in figure 2.  

II.  MODEL 

In regions 1, 2, 3, 4 and 5, the answer to Schrödinger's 

equation everywhere 0E V
is of the same shape including 

traveling and reflecting wave. In region 1, 3and 5 the 

potential energy is zero, and in region 2 and 4 the potential 

energy is 0V
 therefore, 
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22
,

m E VmE
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
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      (1)                                                                      

 The transmission ratio is different in terms of the probability 

of currents according to T equation 

2
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                                                   (2)                                                                                                       

We determine the position of the display and the transmission 

ratios have to decide on restrictions on the use of the solution 

and the constants A, B, and K. 

Perform our calculations; we need reflection and 

transmission amplitudes on junctions.  Individual barrier does 

not depend on the amplitude of the reflection. Allow R be the 

reflection amplitude for a hydroplane gesture of component 

amplitude with energy 0E V
 interrupting on a barrier of 

length L as of the left at x = 0, perceive figure (2).  T allows 

the transmission beam to be the same amplitude. 

Communication, which is recognized by the reflection and 

transmission facilities, as well as the reflection and 

transmission coefficients, is therefore

2
R

 and 

2
T

respectively. 

 
Figure (2): Multi barrier channel region in GNR transistor 

Therefore, with the aspire of deducing the innovative T(E), 

believe the solutions to Schrodinger's equation through in 

every district for 0E V
:  
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Someplace 1 3 5( )k k k k  
 and 2 4( )k k K 

have 

their usual forms as certain in equation (1) and the locations 

of the interfaces have been labeled a, b, c and d, 

correspondingly. By means of the normal Ben Daniel-Duke 

[42] boundary conditions at every crossing point gives the 

following 
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 The method of solution is the transport matrix technique as 

previous; the derived equation indicates the matrix form of 

the model. 

1 2

1 1 2 2

1 1 1 1A C A C
M M

ik ik k kB D B D

          
            

             
3 32 2

3 32 2
3 4

3 32 2

ik b ik bk b k b

ik b ik bk b k b

C F C Fe ee e
M M

D G D Gik e ik ek e k e





         
           

             
3 3 4 4

3 3 4 4
5 6

3 3 4 4

ik c ik c k c k c

ik c ik c k c k c

F H F He e e e
M M

G J G Jik e ik e k e k e

 



          
            

                               
54 4

54 4
7 8

54 4

0

00

ik dk d k d

ik dk d k d

H H Kee e
M M

J Jik ek e k e





       
         

          (5) 

Then, as before, the coefficients of the outer regions can be 

linked by forming the transfer matrix,  
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Obviously, this is a 2x2 matrix equation with four unknown 

parameters and cannot be resolved at this stage. Previously, 

the standard limits, that is
0z 

, as z is used. 

Some states within the quantum wells is not suitable to find 

the wave form such as traveling waves in the barrier 

structures therefore the 2 2  matrix is written as M, then:  
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The transmission coefficient is merely: 
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We carry out a scaled-down version of the double-barrier 

position; the amplitude of the transfer income formula is 

written as: 
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Therefore 1,2w
 are the widths of the two barriers and t is the 

distance between the barrier and the  

Additional parameters are    
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Therefore the transmission coefficient is a guess of how a 

large deal of an electromagnetic wave exceed throughout an 

outside or an optical constituent. Transmission coefficients 

are able to affects amplitude or the intensity of the wave  as 

well is intended by gorgeous relation of the assessment 

subsequent to the outside or constituent to the worth  .This 

complete square provides the transmission coefficient T. 

Therefore, the transmission coefficient is calculated as 
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In foregoing equation, the wave vector 1( )k k
 outside the 

barrier is a real quantity for all positive energies E of the 

electron. The minimum conduction band in the region outside 

barrier taken as zero energy. Since the minimum conduction 

band of barrier is above that of the region outside and hence 

as for certain energies of the electron ( 0E V
) the wave 

vector 2( )k K
 will be imaginary and for energies above 

https://en.wikipedia.org/wiki/Electromagnetic_wave
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Intensity_(physics)
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0V
 ( 0E V

) is real. Thus the energy can be divided into two 

regions, ( 0E V
) for non-classical transition through 

tunneling and ( 0E V
) where transition can occurs even 

under classical conditions. 

The solutions and methods applied to evaluate the 

transmission coefficients in the two regions will be differed 

among many others. Since 1( )k k
 and 2( )k K

are both 

effective mass and energy-dependent , hence for different 

material pairs the variation of the transmission coefficient for 

energy values is normalized with given barriers height [39, 

40,41]. Where 1 2,w w
are the lengths of the barriers. 

The transmission coefficient of electrons through a potential 

barrier is important for studying the leakage current in 

MOSFETs with nanometer dimensions. It is at the same time 

a crucial parameter to shed lights on behavior of multiple 

quantum well structures where the barriers are sandwiched 

between two coupled quantum wells. When the wells and 

barriers regions are in the nanometer range we expect further 

quantization of the energy levels. This is being considered in 

a further study of the multiple quantum well structure. the less 

barriers width, the more tunneling and   transmission 

coefficient value with normalized electron energy will be 

more .For 0

1n

E
E

V

 
  

  , the transmission coefficient 

increases from 0 to 1 in a non-linear manner as figure (3,4) 

illustrates it. 

 

 
 

Figure (3): Transmission for different K values in the GNR at 

channel region 

 

 
Figure (4): Transmission for different k values in the GNR at 

first, third and the fifth regions 

As shown in figure (3) and figure (4) if the energy of electron 

in each region is changed within allowed values the 

transmission coefficient is varied accordingly. 

In the presence of  
2k  and 

2K  the transmission can be 

modified as: 
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                                                                                        (14) 

Where 
1 2 0 2

2
, ,

m
k E k V E     

  

Also Figure (5) gives an example of the Transmission 

coefficient for barriers of height as a function of the distance t 

between them. 

 
Figure (5): Transmission coefficient as a function of the 

energy through a double barrier of height, separated by a 

distance t 
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It is obvious that the results from the resonance increase the 

transmission T as expected which classically indicates a 

reduction on the transmission ratio that means it is more 

difficult for electrons to tunnel through the barriers. 

Increasing the resonance energy by applied voltage will 

increase the effect of confinement barrier height and 

appearance of the high-energy resonance is a reflection of the 

quasi-bound state existence [show me the reference]. In fact, 

the features, such as two-terminal electronic devices in 

general can be summarized with their current-voltage 

characteristics (I-V). As a result Quantum current based on 

the Land Auer formalism Written to the [37,38]:  

0

( ) ( )qI T E F E dE



 
                                             (15)                                                                                                                 

Where   F (E) is Fermi Dirac distribution function which 

illustrates the probability of occupied levels at energy E and 

that can write as: 

1
( )

exp 1F

B

f E
E E

Tk


 

  
                                     (16)                                                                                       

Where BK
Boltzmann’s constant and T is temperature. 

Since the charge carrier barrier structure of the bulk of the 

group, then the integral of energy and Fermi-Dirac 

Distribution function and the density of states of the mass 

(3D) forms. 

In the simplified form by considering the wave vector and 

quantum transmission coefficient the quantum current is 

modified as  

           
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k
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

                                                                                       (17) 

Consequently, quantum current can be simplified in the form 

of well-known Fermi integrals. Therefore, quantum current 

as a function of quantum transmission coefficients is modeled 

as bellow: 
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                                                                                       (18) 

This equation might be numerically solved for different 

potential. Thus, the proposed quantum current model of 

graphene nanoribbon under nanostructured regime by the I-V 

characteristic is evaluated in Figure (6). 

 
Figure (6): I-V model for the double barrier of grapheme 

nanoribbon 

As number of carriers increases, device will operate in 

degenerate limit. Degenerate regime plays   an important role 

on quantum current research in the Nano-scale devices. In the 

degenerate regime, 3F BE E k T  , also, degeneracy of 

MGNS can be defined once Fermi probability function equals 

one  ( ) 1f E  . for the non-degenerate regime in the 

contrary,
3F BE E k T 

 then we can 

write

( ) exp F

B

E E
f E

k T

 
  

  . 

 

 
Figure (7): Compression of the degenerate regime and 

non-degenerate regime 

As figure (7) illustrated in conduction band, where 

concentration of electrons pass the density states , the Fermi 

energy lies in the conduction band  [18].  In the other words, 

given very small amount of x-η in this regime, expr(x-η) can 

be neglected. So quantum current in degenerate 

approximation is; 
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As shown in the Figure (8), quantum current in the range of 

more than zero leads to the degenerate approximation on 

graphene nanoribbon. 

 
Figure (8): I-V model for the double barrier of graphene 

nanoribbon in degenerate approximation 

Non-degenerate approximation as distance increases up to 

3 BK T
  from either the conduction or valance band edge in 

the form of band gap near the Fermi level. In semiconductors, 

non-degenerate region is nestled in a band with distance less 

than 
3 BK T

 beyond from the conductance and valence band. 

Hence, the current in non-degenerate regime can be modified 

by exponential function so that: 
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Finally, the comparison of quantum current, degenerate 

regime and non-degenerate regime is shown in Figure (9). It 

shows the results obtained using the proposed model. 

 
Figure (9): current-voltage curve for the double barrier of 

graphene nanoribbon in nondegenerate approximation 

It shows that at low temperatures, a small part of the energy is 

in the space around band minima. Subsequently the voltage is 

increased, the current starts to fall only in the case of a narrow 

resonance line. When the temperature rises, the carrier 

distribution is expanded as the non-degenerate limit depends 

on the temperature in this limit the current is increased as 

well. It can be concluded that the peak occurs when the 

distribution corresponds to the peak of the resonance energy.  

III.  CONCLUSION 

Additionally, structural parameter effect on quantum current 

of graphene based transistor is analyzed. Finally, At low 

temperatures, a small part of the energy carriers in the space 

around the band minima. Since the area has increased, the 

current starts flowing only when this narrow resonance line 

with the distribution of energy, and thus Current peak is 

narrow. When the temperature rises, the carrier distribution is 

expanding, so that it is more the range of applied voltage, 

which is a degree of alignment of the resonance energy 

carrier. The peak occurs when 

The distribution corresponds to the peak of the resonance 

energy. At voltages above this, the number of carriers 

available Reducing the tunnel and thus reduce the power. 
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