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 

Abstract— Acclimation of microbial communities, aiming to 

methane production from grass as a sole substrate at extremely 

high carbon-to-nitrogen (C/N) ratio, was conducted.  In a series 

of experiments with various sizes of added grass, two microbial 

communities showing high methane production were obtained 

with powdered grass.  In the two microbial communities 

designated NR and RP, Bacteroidia including genera 

Bacteroides, Dysgonomonas, Proteiniphilum, and Alistipes were 

detected as dominant members in eubacteria.  It was also shown 

that Methanomicrobia and Methanobacteria including genera 

Methanomassiliicoccus and Methanobacterium were found as 

dominant members in methanogen.  It is noteworthy that 

nitrogen fixation were observed both in NR and RP, suggesting 

that insufficiency of nitrogen sources would be complemented 

by uptake of nitrogen from gaseous phase in culture. 

 
Index Terms— grass waste, high C/N ratio, methane 

fermentation, nitrogen fixation. 

 

I. INTRODUCTION 

Grass from public space, including roadside-verges and 

river-terraces, is usually cut and left (mulching), or 

incinerated as city waste with a cost.  Annual biomass yield of 

grass in public space is reached 3-6 t dry matter/ha [1].  

Considering a world-wide trend of environment-friendly 

society, energy recovery from the grass waste becomes 

important for management of maintenance cost in public 

space or even for energy supply in the society [2, 3].  In Japan, 

there is no datum on gross production of all available grass 

species, however, for a representative grass Miscanthus 

sinensis, 2 million t dry matter/year of nationwide production 

is estimated [4].  Therefore, approach for utilization of the 

huge amount of grass containing Miscanthus is required.  

Mowing grass is usually carried out within a confined area 

per day, transportation and accumulation of grass for waste 

treatment (eg. incineration) often become problematic 

because of consuming time, labor (energy) and cost.  One of 

the possible solutions is installation of small methane or 

hydrogen fermentation system in each confined area and 

construction of network for dispersed generation of energy, 

mainly electricity.  Benefits among utilization of distributed 

energy resources and their networking have long been 

discussed [5-7]. 
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Anaerobic digestion is a conventional method for biomass 

utilization [8].  Despite the fact that a great deal of research 

for methane production from grass has been conducted 

especially in recent years, almost processes need supply of 

abundant sludge source such as sewage and manure [9, 10].  

Many studies indicated that the optimal carbon-to-nitrogen 

(C/N) ratio in methane fermentation were 25-30, and the C/N 

ratio higher than 40 are not generally suitable [11].  The C/N 

ration of raw grass shows a wide range; wild grassy weed is at 

relatively high (>59) while lawn grass is at low (<29) [12].  

Therefore, it is difficult to conduct methane fermentation 

with wild grass-only, also being due to less degradability of 

lignocellulose [13].  To produce methane from grass, 

pretreatment of grass such as chemical/physical processing 

and ensiling is required to enhance substrate availability and 

methane productivity [14-16].  To construct a system 

utilizing distributed grass biomass on-site, it is preferable that 

methane fermentation is progressed in the vicinity of 

grass-mowing area, without addition of other sludge sources.   

In this study, we succeeded to establish microbial 

communities capable of producing methane from grass as a 

sole substrate.  In addition, the established microbial 

communities showed high methane production at extremely 

high C/N ratio. 

II. MATERIALS AND METHODS 

A. Acclimation of Microbial Communities Producing 

Methane fro Grass 

Japanese wild grass Gyougi-shiba (Cynodon dactylon, 

generally known as bermudagrass but Gyougi-shiba shows 

high C/N ratio around 200) was collected in University of 

Yamanashi and used as substrate grass in this study.  The 

grass was completely dried and cut in 10-50 or 2-5 mm length, 

or ground to powder under 1 mm diameter for investigation 

of effect of substrate size. 

Muds from Nigorigawa river (NR) and Yonbugawa river 

(YR) in Yamanashi prefecture, and a reservoir pond (RP) in 

University of Yamanashi were used as sources of microbial 

communities.  Every 5 mL of source suspension were 

inoculated into 100 mL-volume glass bottles containing 95 

mL media (0.1 M NaH2PO4-K2HPO4 buffer, pH 7.2, and 1% 

w/v grass at final concentration).  Inoculated bottles were 

sealed with rubber stoppers, purged with nitrogen gas, and the 

cultivations were conducted at 35˚C statically.  The microbial 

communities were subcultured every 90 days by transferring 

5 mL of cultures to 95 mL of same fresh media and 

continuing incubation. 
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B. PCR-DGGE Analyses 

Microbial cells were harvested by centrifuging 1 mL 

culture and removing supernatants, and then total genomic 

DNAs were extracted according to the method of Zhu et al. 

[17].  Obtained DNAs were resuspended with sterilized water 

(7 µg/mL), and the 0.5 µL aliquots were used for 50 µL-scale 

PCR with 25 µL of 2 x Ampdirect Plus (Shimadzu, Kyoto), 

0.5 U of BioTaq HS DNA polymerase (Bioline Reagents, 

London), 2.5 pmol each of forward and reverse primers.  For 

eubacteria detection, primers 357F-GC and 517R were used 

[18].  For methanogenic archaea detection, DNAs were 

amplified in 20 µL-scale with 1.0 pmol each of primers A1f 

and Met1340R [19], and then 0.5 µL aliquots of the amplified 

DNAs were used for following 20 µL-scale nested PCR with 

primers GC-clamp-ARC787F and ARC1059R [20].  The 

PCR were carried out at the condition described by Muyzer et 

al. [18]. 

Denatured gradient gel electrophoresis (DGGE) were 

performed by DCode system (Bio-Rad Laboratories, 

Hercules) using gradient gel with concentration from 6% 

polyacrylamide-1.4 M urea-8% deionized formamide to 12% 

polyacrylamide-4.2 M urea-24% deionized formamide under 

0.5 x TAE buffer (pH 8.3).  Five microliters of 

PCR-amplified samples were applied on the gel and were 

separated at 60˚C with 50 V for 30 min followed by 150 V for 

6 h.  Separated DNAs were visualized by SYBR Green I 

staining and UV radiation. 

C. Cloning and Sequencing of PCR Products 

PCR-amplified DNA fragments were ligated with pTAC-2 

vector using DynaExpress TA PCR Cloning Kit 

(BioDynamics Laboratory, Tokyo).  Ligated DNAs were 

transformed into Escherichia coli JM109, and then 

ampicillin-resistant and -galactosidase-negative 

transformants were picked up.  Colony-PCR with M13 

forward and reverse primers (Primers M4 and RV, Takara 

Bio, Kusatsu) were carried out to select transformants 

harboring plasmids with insertion of DNA at predicted sizes.  

Plasmids from selected transformants were purified using 

FastGene Plasmid Mini Kit (Nippon Genetics, Tokyo) and 

were sequenced by outsource service (Greiner Japan, Tokyo).  

Analysis of determined nucleotide sequences was performed 

using GENETYX-MAC Network Version 14.0.11 (Genetyx, 

Tokyo).  Phylogenetic analysis was performed by MEGA7 

Version 7.0.18 [21]. 

D. Analytical Procedures 

For analysis of methane production, gaseous phase with 

positive pressure in culture bottles were collected by syringe 

every 10 days.  After sampling, the gaseous phase in culture 

bottles were refreshed by purging with nitrogen gas, and then 

cultivation was continued.  The contents of methane in 

collected gas were determined by gas chromatography using 

Shimadzu GC2014 system equipped with Molecular Sieve 

5A 60-80 column (3 mm ID x 3 m) and thermal conductivity 

detector.  The analysis was carried out with column 

temperature at 40˚C for 15 min, then gaining temperature at 

rate of 20˚C/min, and finally at 200˚C for 20 min with 

nitrogen as carrier gas (30 mL/min). 

After series of methane fermentation, contents of 

acetone-soluble fraction, holocellulose, -cellulose in culture 

residues were determined by the method of Yokoyama et al. 

[22].  The hemicellulosic contents were calculated as 

differences between holocellulose and -cellulose.  Klason 

lignin contents in culture residues were determined according 

to the description of Browning [23]. 

Nitrogen fixation by acclimated microbial communities 

was confirmed with detection of ethylene yielded under 

acetylene atmosphere.  Briefly, every 1 mL of subculture was 

inoculated into 33 mL-volume glass vials containing 19 mL 

media (0.1 M NaH2PO4-K2HPO4 buffer, pH 7.2, and 1% w/v 

powdered grass).  Inoculated vials were sealed with rubber 

stoppers, purged with nitrogen gas containing 0.1% acetylene, 

and the cultivations were conducted at 35˚C statically.  After 

21 days, gaseous phase with positive pressure in culture vials 

were collected by syringe.  The contents of ethylene in 

collected gas were determined by gas chromatography using 

Shimadzu GC2014 system equipped with Porapak N 80-100 

column (3 mm ID x 2 m) and flame ionization detector.  The 

column temperature on analysis was at 50˚C for 10 min with 

helium as carrier gas (60 mL/min). 

III. RESULTS AND DISCUSSION 

A. Acclimation of Microbial Communities Producing 

Methane from Grass 

Microbial communities NR, RP and YR were subcultured 

with different sizes (10-50 mm, 2-5 mm and <1 mm powder) 

of grass for 90 days three times, and the production of 

methane were investigated.  The C/N ratio of grass used in 

this study was 217±101.6, as determined using elemental 

analyzer Flash EA 1112 (Thermo Fischer Scientific, 

Yokohama).  Figure 1 shows changes of pH, methane and 

hydrogen production in subcultures.  Data from first 

subcultures are not shown because it was considered that 

methane production from organic matters in inoculated muds 

would not be ignored.     
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Fig. 1  Production of methane and hydrogen in subcultures derived 

from Nigorigawa river (NR), reservoir pond (RP) and Yonbugawa river 

(YR).  Data from second and third subcultures are shown with changes 

of pH. 

 

In all subcultures, pH decrease were observed in initial 

10-day, and in the rest culture period pH were maintained at 

values between 6 and 7.  It was also observed that all 

subcultures produced methane but little hydrogen.  In 

comparison among added sizes of substrate grass, NR and RP 
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showed high production over 2 L-CH4/L culture in third 

subculture with <1 mm powder size, however, YR showed 

lower production in all subculture (Fig. 1).  Yu et al. 

described that powderization of grass did not affect yield of 

methane fermentation with anaerobic digester sludge [16].  In 

another side, Wall et al. reported that particle size of grass 

should be crucial for efficient continuous digester operation 

[24].  In subcultures of NR and RP with <1 mm powdered 

grass, it was strongly suggested that microbial communities 

with highly-adaptation to grass digestion were acclimated, 

possibly microorganisms in the communities became readily 

accessible to carbohydrate in grass.  Thus, we focused on 

these subcultures, NR and RP both cultured with powdered 

grass.  In the subsequent fourth subculturing with powdered 

grass, NR and RP maintained high production of methane 

indicating 2.75 L-CH4/L culture and 3.22 L-CH4/L culture in 

90-day cultivation, respectively (Fig. 2A). 
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Fig. 2  Comparison of profiles in fourth subculture between NR and RP.  

(A) Production of methane, hydrogen, and changes of pH.  (B) 

PCR-DGGE band patterns at every 10 days during culture.  The lanes 

applied with 5 µL of DGGE Marker I (Wako Pure Chemicals, Osaka) 

are indicated by M.  A position of band with apparent increase of 

intensity at late culture period is indicated by a closed triangle. 

 

B. PCR-DGGE Analyses 

Selected microbial communities NR and RP with 

powdered grass were stably produced methane well from 30 

day-culture period onward.  The culture profiles of fourth 

subculture and the chronological patterns of PCR-DGGE 

bands in NR and RP are shown in Fig. 2.  In DGGE patterns, 

major 2 or 3 bands presumably derived from dominant 

members of communities were observed both for detection of 

eubacteria and methanogen in NR and RP (Fig. 2B).  For 

detection of eubacteria, many minor bands were also 

observed, suggesting both NR and RP had intricate 

community structures.  Unpredictably, almost DGGE bands 

did not show fluctuation in band intensity except one band 

that appeared at late culture period in NR (Fig. 2B).  The 

observation of DGGE band patterns strongly suggested that 

the acclimated members of each microbial community made 

stable population for grass degradation and methane 

production, both in NR and RP. 

C. Cloning and Sequencing of PCR Products 

PCR-amplified DNA fragments from NR and RP were 

cloned with pTAC-2 vector and transformed into E. coli 

JM109.  In constructed libraries of NR and RP, every 48 

clones from eubacteria-targeted and methanogen-targeted 

amplification were sequenced using M13 forward primer.   

 
  Table 1  Variety of OTUs obtained with primers for eubacteria detection 

   

Table 2  Variety of OTUs obtained with primers for methanogen detection 

 
Appearance frequencies and most similar 16S rDNA 
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sequences in DDBJ/EMBL/NCBI nucleotide sequence 

database searched by BLAST of determined operational 

taxonomic units (OTUs) were summarized in Table 1 and 2.   

Overviewing variety of eubacteria in NR, members belong 

to Bacteroidia including Bacteroides, Proteiniphilum and 

Alistipes were dominant (81%), and members belong to 

Clostridia including Clostridium and Syntrophomonas  were 

subdominant (10%).  In RP, members belong to Bacteroidia 

including Dysgonomonas and Bacteroides were also 

dominant (86%), and members belong to Clostridia including 

Clostridium and Acetanaerobacterium were subdominant 

(14%).  In varieties of methanogen, dominant and 

subdominant members in NR were Methanomicrobia related 

of Methanomassiliicoccus (76%) and Methanobacteria 

related of Methanobacterium (20%), respectively.  By 

contrast, dominant and subdominant members in RP were 

Methanobacteria related of Methanobacterium (67%) and 

Methanomicrobia including Methanosarcina and 

Methanomassiliicoccus (33%), respectively.  Related species 

listed in eubacteria detection (Table 1) were reported to 

utilize polysaccharides and to produce volatile fatty acids 

[25-30], suggestive to play major roles in degradation of grass 

carbohydrates and in pH decrease observed at initial periods 

of cultures.  In addition, all related species listed in 

methanogen detection (Table 2) were known to utilize 

hydrogen and carbon dioxide for methane production mainly 

[31-33].   
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Fig. 3  Phylogenetic tree constructed with OTUs from NR and RP, and 

most similar sequences shown in Table 1 and 2, using Neighbor-Joining 

method [39].  The sums of branch length of the obtained optimal trees 

are 3.08879619 and 1.23343044 for 16S rDNA sequences of eubacteria 

(A) and methanogen (B), respectively.  Bootstrap values (1000 

replicate runs, shown as %) greater than 70% are indicated at branches.  

Bars indicate 20 and 5 substitutions per 100 nucleotide positions in (A) 

and (B), respectively.  DDBJ/EMBL/NCBI accession numbers are 

shown in parentheses. 

Therefore, it was surmised that Bacteroidia and Clostridia 

members would degrade grass carbohydrates to hydrogen and 

carbon dioxide via acid formation, and the Methanobacteria 

and Methanomicrobia members would convert hydrogen and 

carbon dioxide to methane, both in NR and RP. 

Figure 3 shows phylogenetic relationship among OTUs 

obtained from NR and RP, and the related sequences 

available in nucleotide database.  In phylogenetic dispersion 

both of eubacteria and methanogen, dominant OTUs from 

NR (named NRb and NRm) and RP (named RPb and RPm) 

were well mixed and clustered each other (Fig. 3A, clades of 

Bacteroidia and Clostridia; Fig. 3B, clades of 

Methanobacteria and Methanomicrobia).  This result 

suggestively indicates that ‘strict members adapted to 

methane production from grass at high C/N ratio’ should be 

highly acclimated.  In general co-digester with grass and 

manure, more diverse species have been detected besides the 

members of eubacteria and methanogen observed in NR and 

RP [34, 35].   
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Fig. 4  Amounts of residual components in the substrate grass before 

(no treatment) and after (NR and RP) fourth subculture.  

Correspondences between column patterns and components are 

indicated in an inlet. 

 

D. Decomposition of Grass Components 

After fourth subculture of NR and RP, residual amounts of 

components in grass were determined, and the result is shown 

in Fig. 4.  In a 1.0 g of Gyougi-shiba grass added to each 

culture, 0.13±0.04 g, 0.32±0.07 g and 0.16±0.01 g of 

-cellulose, hemicellulose and lignin were contained, 

respectively.  After 90 day-culture, 0.421 g in NR and 0.392 g 

in RP were remained as solid residues.  Hence, approximate 

60% of grass were degraded both in NR and RP.  In NR, 75% 

of -cellulose and 54% of hemicellulose were decreased in 

the substrate grass were decreased, while 65% of -cellulose 

and 59% of hemicellulose were decreased in RP.  Total 

production of methane in fourth subculture of NR and RP 

were 275.5 L-CH4/kg grass and 322.7 L-CH4/kg grass added, 

and final methane concentration in total biogas yielded in NR 

and RP reached 78% and 77%, respectively.  Murphy and 
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Power estimated that methane potential from various grass 

has been 200-400 L-CH4/kg volatile solid [36].  In this point, 

the methane production obtained in this study attained 

sufficient level.  Conversely, approximate 30% of -cellulose 

and 40% of hemicellulose in substrate grass were still 

remained to be utilized.  Therefore, it is possible that 

enhancement of degradation ability for carbohydrates in grass 

would bring higher methane production.  Further analysis for 

degradation manner in NR and RP is awaited. 

E. Assay for Nitrogen Fixation 

The substrate grass Gyougi-shiba used in this study was at 

extremely high C/N ratio around 200.  In common sense on 

methane fermentation, adequate C/N ratio is regarded as 

25-30.  In respect to the variety of community members 

determined by clone sequencing (Table 1and 2), dominant 

members in NR and RP were not so varied from other 

methanogenic communities reported previously.  In a valance 

of carbon and nitrogen, nitrogen was considered to be 

insufficient in NR and RP.  A possibility descriptive to an 

insufficiency of nitrogen is that members in NR and RP 

require only trace amount of nitrogen sources.  However, it 

was unlikely since 2.2±0.98 mg of nitrogen content in 1 g of 

added substrate grass (determined by elemental analysis) was 

considered to be too poor to nourish the community members.  

Another possibility is that nitrogen fixation from gaseous 

phase in culture occurred.  To confirm the nitrogen fixation, 

we tested cultures purged with helium gas, instead of nitrogen 

gas.  As a result, there was no production of methane in both 

cultures of NR and RP purged with helium.  In addition, trial 

to detect nitrogenase activity by ethylene formation from 

acetylene succeeded to detect 6.4 mmol/L culture and 5.0 

mmol/L culture of ethylene in 21-day cultures of NR and RP, 

respectively.  In the 21-day cultures, 1.7 mg/L, 50.7 mg/L, 

14.3 mg/L in NR and 5.0 mg/L, 65.7 mg/L, 17.7 mg/L in RP 

of ammonium, nitlite and nitrate ions were detected, 

respectively.  The gross of determined contents of 

nitorogenous compounds obviously exceeded the available 

nitrogen amount in added substrate grass.  Considering that 

possible nitrogen-fixing archaeon such as Methanosarcina 

and ammonia oxidizer such as Nitrososphaera were 

occasionally appeared in the community members of NR and 

RP (Table 2), nitrogen gas purged in culture should be fixed 

and utilized besides assimilation of organic nitrogen sources 

contained in substrate grass [37, 38]. 

IV. CONCLUSION 

Two microbial communities producing methane at high 

yield were established by acclimation with subculturing 

method.  Established communities NR and RP were able to 

degrade wild grass Gyougi-shiba at extremely high C/N ratio, 

and to produce biogas containing 78% and 77% of methane, 

respectively.  Predominant members of NR and RP similarly 

consisted of Bacteroidia, Clostridia, Methanbacteria and 

Methanomicrobia relatives.  Nitrogen fixation was confirmed 

both in communities NR and RP, indicating that insufficient 

nitrogen was supplied from gaseous phase in culture.  It was 

considered that nitrogen fixation was significant key to adapt 

methanogenic communities to grass utilization at extremely 

high C/N ratio. 
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