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 

 

Abstract-Differential equations are encountered very often in 

engineering problems and generally in al sciences. Modeling the 

effect of variation of physical quantities such as temperature, 

pressure, velocity, stress, strain, current moisture and many 

other on engineering problems requires most of the times the 

establishment of differential equations. For simplicity reason 

the parameters and variables involved which are measured or 

estimated from experience are considered exact even though 

they often contain uncertainties. One way do deal with these 

uncertainties nowadays is through convex fuzzy sets. According 

to all the above it is almost unavoidable to introduce fuzzy 

parameters and variables in the solution of differential 

equations. Much research was carried out during the recent 

years in theoretic and applied subjects containing fuzzy 

differential equations with H-derivative. This method though, 

in some cases has some disadvantages leading to solutions with 

increasing support as time t increases. In order to alleviate this 

disadvantage the generalized differentiability (G-H derivative) 

was introduced. In this paper the case of a semi-confined 

aquifer is studied, which is bounded on top by a thin 

semi-permeable layer and on bottom by an impermeable layer. 

This system leads to a second order differential equation with 

fuzzy boundary. The solution of this problem is obtained using 

the generalized H-derivative. 

 
Index Terms— Fuzzy applications, fuzzy differential 

equations, semi-confined aquifer. 

 

I. INTRODUCTION 

  Differential equations are encountered very often in 

engineering problems and generally in al sciences. Modeling 

the effect of variation of physical quantities such as 

temperature, pressure, velocity, stress, strain, current 

moisture and many other on engineering problems requires 

most of the times the establishment of differential equations. 

Also, the impact of certain physical quantities on other 

physical quantities leads to differential equations. So, the 

theory of differential equations is found in mechanical 

vibration or structural dynamics, heat transfer, hydraulics etc. 

The engineers should be able to model actual problems using 

mathematical equations and through their solution to 

comprehend the behavior of the systems under consideration. 

Differential equations are extensively used in mathematical 

modeling and engineering applications. Theory and 

 
Christos Tzimopoulos, School of Engineering, Aristotle University of 

Thessaloniki, Thessaloniki, Greece,  

Christos Evangelides, School of Engineering, Aristotle University of 

Thessaloniki, Thessaloniki, Greece 

Kyriakos Papadopoulos, College of Engineering and Technology, 

American University of the Middle East, Egaila, Kuwait 

Basil Papadopoulos, School of Engineering, Democritus University of 

Thrace, Xanthi, Greece 

techniques for solving differential equations are applied to 

solve practical engineering problems. 

For the sake of simplicity the parameters and variables 

involved in the systems are considered as crisp or defined 

exactly. Real problems though lack exact information about 

the variables and parameters obtained by experiment or 

experience. Nowadays, these uncertainties are modeled 

through convex normalized fuzzy sets. So, it is necessary to 

include in the solution of differential equations fuzzy 

variables and fuzzy parameters.  

Fuzzy set theory is a powerful tool for modeling uncertainty 

and for processing subjective information in mathematical 

models. The development of this subject has been focused to 

theoretical topics ([1]-[5]-[14]-[16]) as well as to applications 

like population models, civil engineering and hydraulics 

([11]-[12]). 

Initially differentiable fuzzy functions were studied by [18], 

who generalized and extended the concept of [13], 

differentiability (H-derivative) of set valued mappings to the 

class of fuzzy mappings. Also, [14] and [19] developed a 

theory for fuzzy differential equations. 

Many works have been carried out during last years in 

theoretical and applied topics for fuzzy differential equations 

with H-derivative ([14]-[16]-[19]-[21]). But in some cases 

this method suffers certain disadvantages that lead to 

solutions with increasing support as time t increases ([5]-[9]). 

This proves that in some cases this solution is not a good 

generalization of the corresponding crisp case. In order to 

surpass the above deficiency, the generalized differentiability 

was introduced ([2]-[3]-[4). This new derivative is defined 

for a larger class of fuzzy functions than Hukuhara derivative 

[13]. 

In this paper the case of a two-point fuzzy boundary value 

problem for a second order fuzzy differential equation is 

studied, the problem concerns the case of a semi-confined 

aquifer which is bounded on top by a thin semi-permeable 

layer and on bottom by an impermeable layer. This system 

leads to a second order differential equation with fuzzy 

boundaries. The solution of this problem is obtained using the 

generalized H-derivative. 

II. MATHEMATICAL MODEL 

A. Definitions 

Definition 1. A fuzzy set U
~

on a universe set X is a 

mapping ]1,0[X:U
~

 , assigning to each element Xx  

a degree of membership .1)x(U
~

0   The membership 

function is also defined as )x(μ
U
~ with the properties: 
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U
~μ is upper semi continuous, 

)x(μ
U
~ =0, outside of some interval [c, d], 

there are real numbers a and b ,  dbac  , such that 

U
~μ

is increasing on [c,a], decreasing on [b, d] and )x(μ
U
~ =1 

for each ].b,a[x  

U
~

is a convex fuzzy set (i.e. 

)}x)λ1((μ),xλ(μmin{)x)λ1(xλ(μ
U
~

U
~

U
~ 

 

Definition 2. Let X being a Banach space and U
~

being a 

fuzzy set on X. We define the α-cuts of U
~

as 

}0)x(U
~

Xx{]U
~

[ α  , with 1α0  , and for α=0, 

we also define the closure as }0)x(U
~

Xx{]U
~

[ 0  . 

Definition 3. Let К(X) the family of all nonempty compact 

convex subsets of a Banach space. A fuzzy set U
~

 on X is 

called compact if α]U
~

[ К(X), ].1,0[α  The space of 

all compact and convex fuzzy sets on X is denoted as F (X).   

Definition 4.  Let U
~

F (R). The α-cuts of U
~

, are: 

)]x(U),x(U[]U
~

[ αα

α  . 

According to the representation theorem of [15] and the 

theorem of [10] the membership function and the α-cut form 

of a fuzzy number U
~

are equivalent and in particular the 

α-cuts )]x(U),x(U[]U
~

[ αα

α  uniquely represent U
~

, 

provided that the two functions are monotonic  

(


αU increasing, 


αU decreasing)  and  ,UU 11

   for 

α=1. The derivatives of each α-cut with respect to x, for a 

given ],1,0[α  are denoted as: 

x

)x(U
)U(,

x

)x(U
)U( α

x
'

α
α

x
'

α
















. 

Definition 5.  The following notations are used for the above 

derivatives with respect to α 

)x()Uδ(

)
α

)x(U
(

x
)

x

)x(U
(

α
))U((δ

),x()Uδ(

)
a

)x(U
(

x
)

x

)x(U
(

α
))U((δ

x
'

α

αα
x

'

α

x
'

α

αα
x

'

α























































 

Lemma 1. If both ),x(U α


and )x(U α


 are differentiable 

w.r.t. x, then the α-cuts of the gH (generalized 

Hukuhara)-derivative of U are: 

)}]x()U(),x()Umax{(

},)x()U(),x()U[min{()x(U
~

'

α

'

α

'

α

'

αgH
'





, 

provided that the two functions: 

},)x()U(),x()Umin{()x(U
~ '

α

'

ααgH
'  

and    

},)x()U(),x()Umax{()x(U
~ '

α

'

ααgH
'  

 
define a fuzzy number (w.r.t. α). Here the functions 

'

α

'

α )U(,)U( 
denote the derivatives with respect to x, for 

given ].1,0[α  

Definition 6.  Let ]U
~

[  F(R), with the 

a-cuts )]x(U),x(U[]U
~

[ αα

α   satisfying Lemma 1. 

According to [3]: 

 1. U
~

is (i)-generalized Hukuhara (gH) differentiable if: 

 

].1,0[αfor

0))x(U
x

(
α

)x()Uδ(

0))x(U
x

(
α

)x()Uδ(

)x()U()x()U(

αx
'

α

αx
'

α

x
'

1x
'

1































 

2. U
~

is (ii)-generalized Hukuhara (gH) differentiable if: 

 

 
].1,0[αfor

0))x(U
x

(
α

)x()Uδ(

0))x(U
x

(
α

)x()Uδ(

)x()U()x()U(

αx
'

α

αx
'

α

x
'

1x
'

1































 
 

B. Seni-confined aquifer 

  

The semi-confined aquifer (Fig.1) is discharging towards a 

Lake. This aquifer is bounded on top by a thin 

semi-permeable layer of thickness B΄ and on the bottom by an 

impermeable layer. On top of the semi-permeable layer there 

is water entrapped by an earth dam. The equation describing 

the water level variation h as a function of length x is given 

as: 

 

0
λ

hh

dx

hd
2

o

2

2




 ,                                                      (1) 

 

where λ is a leakage factor given by the relation: 

 

,KBcλ                                                                  (2)

  

and c is the hydraulic resistance of the semi-permeable 

aquifer having time dimensions and is given by the following 

relation: 

 

'

'

K

B
c  .                                                                           (3)

  

Equation (1) resulted from the application of Darcy’s law and 
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also taking into account the leakage from the 

semi-impermeable layer ([19]-[21]). In relations (1), (2), (3), 

Κ is the hydraulic conductivity of the semi-confined aquifer, 

Β is its thickness, Β΄ is the thickness of the thin 

semi-permeable layer , Κ΄ is  its hydraulic conductivity, h0 is 

the head of the aquifer for x , and h1 is the head of the 

aquifer at x=0. 

h1

Impermeable layer

Semi-Impermeable layer

Semi-confined aquifer B
h0

K

Β΄
Κ΄

`

h

x

h

q(m
3
/s/m

)

 
Fig. 1. Semi-confined aquifer. 

 

We introduce now in (1) the drawdown s=ho-h and we 

obtain: 

 

0
s

dx

sd
22

2





.                                                               (4) 

 

The boundary conditions of the above problem then become:  

.x0hhs)(s

0x,hhs)0(s

ooo

1o1





                       (5)

  

 

We replace now in (4): 

 

λ

x
X 

,                                                                             (6)

  

and this leads to : 

 

0s
dX

sd
2

2


,                                                                   (7) 

 

with boundary conditions : 

 

.X0hhs)(s

0X,hhs)0(s

00

100





                        (8)

  

 

 

 

C. General solution 

 

The above equation has the general solution: 

 

λ/x

2

λ/x

1 ecec)α,X(s 
. 

 

For Χ=0, s0=c1+c2, and for .0c,X 1   

 

So c2 = s0 and the solution now takes the form: 

 
X

0es)c,X(s 
or, 

X

00 eshh 
.                                                              (9) 

 

D. Fuzzy model 

 

We fuzzify now the solution: 

 

,es~h
~

h
~ X

00

  (10) 

 

where ),m,0(s~),m,r(s~ 210    and m1, m2 are the 

centers of fuzzy numbers and r, 0 are the spreads. The number 

0s~  is a symmetrical triangular fuzzy, while ),0m(,s~ 2   

is a crisp number, expressed in fuzzy notation. The fuzzy 

boundary conditions are now:  

 

)0m(],0,0[]s,s[s~

)],α1(rm),α1(rm[]s,s[s~

2r
ααα

11or
α

o
αα

o





 



(11) 

 

From (9) and (10) we arrive to: 

 

)].X,α(h,)X,α(h[}e))α1(rm(h{

},e))α1(rm(h[{

])esh(),esh[(

]es,es[]h,h[es~h
~

h
~

X

10

X

10

X

00

X

00

X

0

X

000

Xα

0

α

0

α

















(12) 

The functions 
)X,α(h and 

)X,α(h are both 

differentiable w.r.t. x and we have:  

 

X

1

x
'X

1x
'

e))α1(rm(

)X,α(h,e))α1(rm()X,α(h









,     (13) 

where 

.)X,α(h)X,α(h

or,e))α1(rm(e))α1(rm(

x
'

x
'

X

1

X

1









 

According to Lemma 1 the gH-derivative of h
~

is: 

},)]x(h
~

[,)]x(h
~

{

]}e))α1(rm(,e))α1(rmmax{(

},e))α1(rm(,e))α1(rm[min{(

]})X,α(h,)X,α(hmax[

,])X,α(h,)X,α(h{min[]h
~

[

α

'

α

'

X

1

X

1

X

1

X

1

x
'

x
'

x
'

x
'α

x
'




















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providing that the two functions: 

])X,α(h,)X,α(hmin[)x(h
~

x
'

x
'

α

'  
and 

])X,α(h,)X,α(hmax[)x(h
~

x
'

x
'

α

'  
, 

define a fuzzy number with respect to α. 

 

We have now: 

 

X

1

x
'

x
'

α

'

X

1

x
'

x
'

α

'

e)α1(rm

])X,α(h,)X,α(hmax[)x(h

,e)α1(rm

])X,α(h,)X,α(hmin[)x(h

















 

Xx
'

Xx
'

re
α

)X,α(h
,re

α

)X,α(h 















, 

  1

'

1

' )x(h
~

)x(h
~

. 

So the two functions ,)x(h
~

α

'  ,)x(h
~

α

' 
define a fuzzy 

number with respect to α. 

 

For the above relations we have: 

1x
'

1x
' m)X,1(hm)X,1(h  

, 

 

],1,0[αfor,0re

α

}e)α1(rm{

))x(f
x

(
α

)x()hδ(

X

X

1

αx
'

α

























(14a)   

          

],1,0[αfor,0re

α

}e)α1(rm{

))x(f
x

(
α

)x()hδ(

X

X

1

αx
'

α

























(14b)              

 

According to [3], (14a) and (14b) determine that the function 

)X,α(h
~

 is (ii) gH-differentiable. 

   
0

0,1

0,2

0,3

0,4
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1
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s
~

os
~

m1-r m1+rm1

s~μ

S

 

Fig. 2. Boundary conditions 

 

E. Discharge calculation 

 

The discharge per unit length is given by:  

dX

dhKB

dx

dh
KBq




. (15) 

 

The derivative dX/dh  is taken from (13) and (15) takes 

now the following form in fuzzy notation: 

 

]e))1(rm(,e))1(rm[(
KB

q~ X

1

X

1

 



 

 

III. APPLICAIONS 

A. Application 1 

 

It is assumed that the aquifer has the following 

characteristics: 

K=0.4cm/s (gravel), K΄=0.01cm/s (sand), h1=B=20m, 

h0=24m, h1=20m, B΄΄=0.8m, λ=√(KBB΄/K΄)= 25.29m, 

KB/λ=0.003162m/s, m1=4m, r=1m. 

The solution is: 

}]e))α1(4(24{

},e))α1(4(24[{

}]e))α1(rm(h{

},e))α1(rm(h[{h
~

X

X

X

10

X

10

α

















 

19
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21

22

23

24

0 1 2 3 4 5 6

0α)X,α(h 



0α

r)X,α(h 

)X,1(h

X=x/λ

)X,α(h
~

λ=25.29m

 

Fig.3  Variation of solution )X,α(h
~

 as a function of 

distance Χ. 
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Fig.4  Membership function of the solution at x/λ=0, 1, 2. 
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Fig.5  Variation of q~  as a function of Χ. 

 

In position (Χ=0) the discharge towards the Lake is: 

 

)]α5(),3α[(003162.0

]e))α1(rm(,e))α1(rm[(
λ

KB
q~ 0X

1

0X

1

0



 

  

This discharge for α=0, takes the following values: 

.msm]0158.0,0095.0[q~ 1130α

0X



 
 

Assuming that the dam has a crest length100 m, the discharge 

towards the Lake takes the following value:  

,sm]581.1,948.0[q~ 130α

0X



 
and for time span of one day 

the discharge volume will be: 

,d/m]610136,96681[V
~ 30α

0X 

  
the volume for  α=0.5 takes the following value : 

.d/m]949122,62795[V
~ 35.0α

0X 

  
and finally for a=1 the discharge volume will be:  

.d/m]288109,288109[V
~ 31α

0X 

  
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Fig.6  Discharge volume V
~

towards the Lake. 

B. Application 2 

We assume an aquifer with the following characteristics:  

K=0.2cm/s(gravel), 04.0K  cm/s(sand), B=16m, 

3B  m, λ=15.49m, m1=6m, r=1m, s(0)=6m, 

ΚΒ/λ=0.002066m/s, h0=22m, h1=16m. 

 

The solution is: 

}]e))α1(6(22{

},e))α1(6(22[{

}]e))α1(rm(h{

},e))α1(rm(h[{h
~

X

X

X
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
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
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Fig.7.  Variation of )X,α(h
~

 as a function of distance Χ. 

 

In position (Χ=0), the discharge towards the Lake is: 
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This discharge for α=0, takes the following value: 

.msm]01446.0,01033.0[q~ 1130α

0X



 
 

Assuming again a dam with 100m crest length: 
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0X



 
 

and during a day the discharge will be: 

.d/m]124951,89251[V
~ 30α

0X 

  
the volume for  α=0.5 takes the following values: 

.d/m]116003,98157[V
~ 35.0α

0X 

  
and finally for α=1 the discharge becomes:  

.d/m]107101,107101[V
~ 31α

0X 

  

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 1 2 3 4 5 6 7 8

q~

)0,X(qr

)1,X(q)1,X(q r

)0,X(q
X=x/λ

(m
3
/s/m)

λ=15.49m

 

Fig.8  Variation of q~  as a function of Χ. 
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Fig.9  Discharge volume  V
~

towards the Lake. 

 

C. Application 3 

We assume an aquifer with the following characteristics:  

K=0.2cm/s(gravel), K΄=0.01cm/s(sand), h1=B=20m, 

h0=24m, B΄΄=0.8m, λ=√(KBB΄/K΄)= 17.88m, 

KB/λ=0.002236m/s, m1=4m, r=1m.  

The characteristics are the same as in the example 1, except 

the hydraulic conductivity K, which is the half of the value of 

example 1. For that reason the values of λ and KB/λ have 

changed. The variation of )X,α(h
~

vs. X, remains the same 

as in Fig. 1, with different λ, but the variation of q~ vs. X, as 

well as the value of discharge volume  V
~

 towards the Lake 

have completely changed, because of the change of λ and the 

KB/λ. The fig. 10, 11, 12 show the existing differences 

between the example 1 and example 3. 
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Fig.10 Variation of )X,α(h
~

 as a function of distance Χ. 
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Fig.11  Variation of q~  as a function of Χ. 
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Fig.12  Discharge volume  V
~

towards the Lake. 

 

IV. COMMENTS-CONCLUSION 

 

The function )X,α(h
~

 is (ii) gH-differentiable and its 

derivative  )X,α(h
~

x
'

 equals: 

]})X,α(h,)X,α(hmax[

,])X,α(h,)X,α(h{min[]h
~

[

x
'

x
'

x
'

x
'α

x
'





 
and so a solution to this problem can be obtained. 

The fuzziness is decreased with increasing Χ=x/λ and 

practically for Χ > 4 in both cases the values of h and q 

became crisp numbers. 

As it is shown in the above examples the discharge volume 

decreases as α, which is called the confidence level, is 

increased. Consequently the interval ]V,V[ αα

r   is decreased 

by 50% accordingly to the increase of α. 

The discharge volume in the second case is decreased by a 

percentage of 2% compared to the volume in the first, even 

though the hydraulic conductivity is reduced by 50% and the 

thickness of the aquifer is reduced by 20%. This is due to the 

fact that the value of ΚΒ/λ in second case multiplied by the 

slope of the head at x=0, provides a value which is only 2% 

less than in the first case.  

The discharge volume in the third case is decreased by a 

percentage of 30% compared to the volume in the first, even 

though the hydraulic conductivity is reduced by 50%. This is 

due to the fact that the value of leakage factor λ in third case is 

reduced by 30%, as well as the value of KB/λ, and q~ is 

multiplied by this value.  

So in our case the leakage factor and the slope of the head 

function have a very significant role in the solution.  
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