68Ga-citrate PET/CT is Valuable for Abdominal Lymphoma Imaging

Ling Wang, Jiong Cai, Hong Yang, Zhaohui Zhu, Fang Li

Abstract—Introduction: Although 67Ga-citrate has been used in scintigraphic imaging for lymphoma, the long physical half-life of 67Ga and inferior resolution of SPECT scanner limited the wide-spread application of this agent. In contrast, the ideal physical half-life of 68Ga and superior resolution of PET scanner push us to test lymphoma imaging potential of 68Ga-citrate. Materials: Sodium citrate was added into newly eluted 68Ga and incubated at room temperature for 15 min for 68Ga-citrate preparation. Three patients with abdominal lymphoma were retrospectively analyzed after 68Ga-citrate PET/CT imaging. Results: 68Ga-citrate was labeled with >99% yield and purity within 15 minutes. 68Ga-citrate PET/CT revealed rapid progression of bowel diffuse large B-cell lymphoma in one patient; 68Ga-citrate revealed more lesion than 18F-FDG in another diffuse large B-cell lymphoma patient; 68Ga-citrate imaging was negative in an enteropathy-associated T cell lymphoma patient. Conclusion: A simplified method to prepare 68Ga-citrate without nuclide pre-purification is available. 68Ga-citrate can be used for lymphoma imaging and further evaluation is warranted.

Index Terms—68Ga-Citrate, Diffuse large B-cell Lymphoma, PET, imaging.

INTRODUCTION

Lymphoma is a type of cancer that occurs when B or T lymphocytes divide faster or live longer than they should be. Lymphoma often originate in lymph nodes and may develop in the lymph nodes, spleen, bone marrow, blood or extranodal sites including tonsils, skin, brain, bowels and bone and eventually they form a tumor [1,2]. Lymphoma presents with certain non-specific symptoms such as swelling of lymph nodes, fever, night sweats, weight loss, anorexia, fatigue, dyspnea, itching, and etc. Lymphoma is definitively diagnosed by a lymph node biopsy, further characterized by immunophenotyping, flow cytometry, FISH testing, and finally divided into different categories according to whether or not it is a Hodgkin lymphoma, the site that the cell arises from, whether the cell that is replicating is a T cell or B cell or natural killer cell [3,4]. Indolent lymphoma is compatible with a long life even without treatment, whereas aggressive lymphoma causes rapid deterioration and death [5]. However, Most of the aggressive lymphomas such as diffuse large B-cell lymphoma (DLBCL) and enteropathy-associated T-cell lymphoma (EATL) respond well to treatment and are curable [6]. The correct diagnosis and classification of the disease is very important to the prognosis. DLBCL is aggressive lymphoma often occurred outside lymph nodes in all ages, but most commonly in older adults with overall 5-year survival of 60%. Its relative incidence in adults is 40 to 50% of lymphomas. Most DLBCL resemble B cells of large germinal centers and express CD20 on cell surface [7]. EATL, a peripheral T-cell lymphoma, accounted for 9% of gastrointestinal lymphomas [8].

67Ga-citrate has been used in scintigraphic imaging for lymphoma and was valuable for prognosis [9-12]. 67Ga scintigraphy is an excellent predictor of residual tumor viability in DLBCL patients and that persistent positivity of the scan predicts poor outcome and may justify a change in treatment [13]. However, the long physical half-life of 67Ga (78h) limited the wide-spread application of this agent because the injection dose is relatively low, which result in low image quality. The gamma spectrum of 68Ga varies from 92 to 300keV, which lower the quality and resolution of the final image and increase the radiation dose to patient and clinical staff. In recent years, 68Ga has been produced successfully and is commercially available. The ideal physical half-life of 68Ga (68min) makes 68Ga-citrate can be administered with high dose. The positron emitted by 68Ga can be used for PET imaging with high resolution and high image quality. Interestingly, 68Ga-citrate has been successfully in the diagnosis of osteomyelitis, diskitis and intra-abdominal infection but not in lymphoma [14,15]. Also, the relatively complex procedure of 68Ga-citrate preparation in the literature makes the routine use of 68Ga-citrate difficult [14,16]. In this study, we try a simplified method to label citrate with 68Ga and test its imaging potential in lymphoma patients.

EXPERIMENTAL SECTION

Materials

68Ge/68Ga generator was provided by ITG (Isotope Technologies Garching GmbH, Germany). 68Ga was eluted with 0.05N HCl from the generator. Sodium citrate was produced by Xinning pharmaceutical (Guangdong, China).

68Ga-citrate labeling and quality control

Sodium citrate of 0.1mol/L was prepared with Millipore water (18MΩ). Aliquoting 0.2ml citrate into 0.6ml of
68Ga-citrate PET/CT is Valuable for Abdominal Lymphoma Imaging

68Ga(370MBq) to final pH of 4.0 and incubating at room temperature for 15min. The mixture was diluted with 5ml saline and filtered with 0.22μm membrane for quality control and imaging. Instant thin layer chromatography (ITLC) was used for 68Ga-citrate quality control. The radiochemical purity was determined by ITLC-SG strips (Pall) with methanol and glacial acetic acid (v:v=9:1) as mobile phase.

PET Imaging

68Ga-Citrate (148 MBq) was injected intravenously in two DLBCL patients and one EATL (Type II) patient. The images were acquired 60 minutes post-injection.

RESULTS

Quality control of 68Ga-citrate

The radiochemical purity and yield of 68Ga-citrate was over 99%. The Rf of 68Ga-citrate was 1 (Fig 1A) while that of 68Ga was 0 (Fig 1B) in mobile phase glacial acetic acid and methanol (1:9). This result indicated that the 68Ga directly eluted from 68Ge/68Ga generator can be used for citrate labeling without pre-purification by ion exchange resin.

Fig 1. Radiochemical purity determination of 68Ga-citrate by ITLC-SG with mobile phase glacial acetic acid and methanol. (A. 68Ga-citrate, Rf=1; B. free 68Ga, Rf=0)

68Ga-citrate PET/CT revealed rapid progression of DLBCL

We here present a case of a 45-year-old male patient with DLBCL. He underwent 68Ga-citrate PET/CT, which clearly showed that ileocecal region of the colon was abnormal (Figure 2 top). About one month later, the patient situation became worse, intestinal obstruction symptom appeared. 68Ga-citrate PET/CT were repeated, expanded 68Ga-citrate accumulation was found in the previous ileocecal region of the colon (Figure 2 bottom). The lesion was removed by surgery and the biopsy of the lesion confirmed DLBCL (Figure 3). This case indicated that 68Ga-citrate PET/CT should be used as routine procedure for diagnosis of bowel lymphoma.

![Figure 2](https://example.com/figure2.png)

Fig 2. 68Ga-citrate PET imaging revealed rapid progression of DLBCL. (The top PET images were acquired 90min after intravenous 3mCi dose administration demonstrated the colon wall accumulated 68Ga-citrate significantly higher than the background on Sep 25, 2013; simultaneous CT demonstrated that the colon wall thickened. The bottom PET image demonstrated the colon wall accumulated 68Ga-citrate further wider than before On Oct 31, 2013; simultaneous CT demonstrated the colon wall further thickened.

![Figure 3](https://example.com/figure3.png)

Fig 3.
The literature reported that the pre-purification of 68Ga was needed before citrate labeling. The procedure consisted of eluting 68Ga from generator with dilute hydrochloric acid, loading 68Ga on cationic exchange resin, washing with low acidic acetone to remove impurities such as Ti, Zn, Fe and 68Ge. The final purified 68Ga was eluted with higher concentration of acidic acetone and residual acetone was evaporated with 1 min boiling [14]. Dawson firstly described colorectal lymphoma in 1961 [23], but till now the lack of specific symptoms usually lead to delayed diagnosis in large part of patients. In this study, 68Ga eluted from generator was directly added into sodium citrate for citrate labeling. The labeling efficiency is high enough for imaging without further purification. Three abdominal lymphoma cases reported here proved that 68Ga-citrate PET/CT is valuable for diagnosis of abdominal lymphoma. The site most commonly involved in colon lymphoma is the ileocecal region due to the proliferation of lymphoid tissue (Peyer’s patches) in this area [24]. In one patient, rapid progression of DLBCL was revealed by 68Ga-citrate PET/CT. In another DLBCL, 68Ga-citrate revealed more lesion than 18F-FDG. The SUVmax in the lymphoma of 68Ga-citrate is lower than that of 18F-FDG. The reason for negative imaging of 68Ga-citrate in an EATL patient is unknown. The mechanism of 68Ga-citrate imaging is its transferrin receptor binding. Since some lymphomas are transferrin receptor negative, the lesions displayed on 68Ga-citrate may be false negative [20]. Early detection with 18F-FDG PET/CT, combined with 68Ga-citrate PET/CT, may be beneficial for suspected lymphoma patients. The imaging of 18F-FDG is based on glucose utilization, so the lesion displayed on 18F-FDG image may be inflammation, which results in false positive. The balance reading between the 18F-FDG and 68Ga-citrate image is helpful for diagnosis of suspected lymphoma patients before biopsy. However, only a few cases were presented in this study, further evaluation of 68Ga-citrate with more cases in lymphoma imaging is needed in the future.

CONCLUSION

In summary, 68Ga-citrate without nuclide pre-purification is prepared in our facility. 68Ga-citrate can be used for lymphoma imaging and 68Ga-citrate PET/CT is proved to be valuable for abdominal lymphoma imaging. Further 68Ga-citrate PET/CT evaluation in lymphoma detection is warranted.

ACKNOWLEDGMENT

This work was financially supported by the National Natural Science Foundation of China (Grant No. 81571712).

REFERENCES

Ga-citrate PET/CT is Valuable for Abdominal Lymphoma Imaging

