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 

    Abstract-- In this article, we address some conditions on 

invariant measure of Markov semigroups which ensures 

stochastic bifurcations of a wide class of stochastic differential 

equations with fractional Brownian motion. This leads to 

sufficient conditions on Hurst  parameter,drift and diffusion 

coefficients for a stochastic bifurcations of the families of 

random dynamical systems.According to the Hölder coefficient 

of the diffusion function around the singular point and Hurst  

parameter, we identify different regimes. Interestingly, for the 

first time it is found that the Hurst parameter affects both 

bifurcation conclusions and large deviations which is 

significantly different from the classical Brownian motion 

process. This fact is due to the long-range dependence (LRD) 

property of the fBm. 

 
    Index Terms:  Random dynamical systems; Stochastic 

stability; Stochastic bifurcation; Invariant measure; Fractional 

Brownian motion 

I. INTRODUCTION 

    The classical central limit theorem (CLT) reveals that the 

probability distribution of the sum (or average) of many 

independent and identically distributed (i.i.d.) random 

variables with finite variance approaches the normal 

distribution[1-3].For this reason Gaussian models have been 

widely employed in many fields, and properties of Gaussian 

processes are characterized by second-order statistics, such 

as variance and correlation.In practical applications,  

however, since in many problems related to network traffic 

analysis, mathematical finance, and many other fields the 

processes under study seem empirically to exhibit the 

selfsimilar properties, and the long-range dependent 

properties, and since the fractional Brownian motions are the 

simplest processes of this kind[4-10]. It is suggested that [11] 

the fractional processes provide a better description of these 

random variables with properties of being infinite variance, 

non-Gaussian or non-stationary. Moreover, it is worth noting 

that the noise term in the stochastic system is used to describe 

the interaction between the (small) system and its (large) 

environment. The non-independence over disjoint time 

intervals in noise term applied by the environment to the 

system makes the fBm more useful since it can exhibit 

long-range dependence. For this reason, and also because the 

fBm includes the fundamental classical Brownian motion as 

a special case when H 1 2, there has been an increasing 

interest in the research activity related to the fBm itself and 

the stochastic systems driven by it. 
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    A large class of phenomena can be described using 

stochastic differential equations(SDE) drive white noise, in 

such distinct domains as economics, physics or biology. 

Many analytical methods have been developed to 

characterize the solutions of such systems. In particular, the 

widely applied theory of stochastic bifurcations[12] allows a 

qualitative characterization of the asymptotic regimes of 

random dynamical systems. This theory is very handy to 

study nonlinear stochastic differential equations and is used 

to characterize the asymptotic behavior of complicated 

systems. Investigating the impact of fractional Brownian 

motion noisy perturbations on such systems is hence of great 

interest, and is currently an active field of research. In recent 

years, it has been shown in many different areas that applying 

fractional noise on a random system can lead to many 

counter-intuitive phenomena, such as fractional 

noise-induced stabilization [13] and control[14]. From a 

mathematical perspective, understanding the interplays 

between white noise and fractional noisy perturbations is a 

great challenge, with many applications. Several tools have 

been introduced, ranging from the theory of random 

dynamical systems (RDS) [15,16], the study of moment 

equations [17,18] or multiscale stochastic methods for 

slow-fast systems [19]. Unfortunately no systematic method 

in the flavor of bifurcation theory for the analysis of the 

dynamics of nonlinear SDE drive fractional white noise exist, 

and this is the central problematic of the present manuscript. 

    We focus here on the dynamics of random dynamical 

systems induced parametrized one dimensional stochastic 

differential equation driven by the fractional Brownian 

motion(fBm). The question we address is how the interplay 

between the Hurst parameter, drift and the shape of the 

diffusion function affects the behavior of the system. An 

important contribution of RDS theory to the field of 

stochastic bifurcations is to distinguish between 

phenomenological(P) bifurcations and dynamical (D) 

bifurcations. One is the phenomenological approach favored 

by physicists and engineers based on the qualitative changes 

of stationary measure,i.e., the stationary probability density 

of the response. The other is the dynamical approach favored 

by mathematicians based on the qualitative changes of 

stability of invariant measures and occurrence of new 

invariant measures for random dynamical systems. Each 

approach has its advantages and the two approaches can be 

regarded as complementary to each other [12,20]. We 

investigate the questions of stochastic stability and 

bifurcations(P and D) in a comprehensive manner, using 

combinations of appropriate tools such as invariant measure, 

Lyapunov exponent, stationary measure and Lyapunov 

functionals. Mathematically, the choice of a vanishing 

diffusion coefficient provides a framework to study subtle 
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competitions between the drift and the fractional noise, 

leading to a rich and generic phenomenology. 

    The paper is organized of as follows: In Section 2, we give 

some Definitions. We study the stochastic bifurcation in 

Section 3 and the two examples are given to illustrative our 

presented results in Section 4. 

 
III.  PRELIMINARIES 

    In the section, we present some preliminary results to be 

used in a subsequent section to establish the stochastic 

stability and stochastic bifurcation. Before proving the main 

theorem we give some lemmas and definitions. 

    In this paper, we analyze the behavior of the solutions for a 

class of stochastic equation with fractional Brownian 

motion(fBm): 

  
( ) ( ) ,H

t t t tdx f x dt g x dB 
                          

(2.1)
                   

where
H

tB is a fractional Brownian motion defined on a 

complete probability space ( , , ) PF  endowed with the 

natural filtration  ( )t t�F of .H

tB Notice that several classical 

normal forms can be reformulated in this setting and our 

general results will be applied to the cases of the Transcritical, 

pitchfork or Hopf  bifurcations in section 3. We assume that 

there exists a singular poin
*x such that 

* *( ) ( ) 0f x g x  . 

The system has a trivial solution distributed as a Dirac 

measure localized at the singular point 
* ,x  and we shall 

address the stochastic bifurcation of these solutions. In 

contrast to the case of ODEs there are at least five different 

notions of stochastic bifurcation[12] 

    Definition     1     (D-Bifurcation) Dynamical bifurcation 

is concerned with a family random dynamical systems which 

is differential and has invariant measure .   If  there exist a 

constant 
D  satisfying in any neighborhood of 

D , there 

exist another constant  and the corresponding invariant 

measure     satisfying     as .D   

Then the constant 
D  is a point of dynamical bifurcation. 

    Definition 2 (P-Bifurcation) Phenomenological 

bifurcation is concerned with the change in the shape of 

density (stationary probability density) of a family random 

dynamical systems as the change of the parameter. If there 

exist a constant 
0  satisfying in any neighborhood of 

D , 

there exist other two constant 1 2,  and their corresponding 

stationary density function 
1 2
,p p   satisfying 

1
p and

2
p  

are not equivalent. Then the constant
0 is a point of 

phenomenological bifurcation.  

   Definition     3         (Stochastic Transcritical Bifurcation) 

A family of RDS ( )    on  undergoes a Stochastic 

Transcritical  Bifurcation at 0  , if   

    (i) for 0  ,   has exactly two ergodic invariant 

measure in 0( ) :I    which is stable, and a  with a 

random variable 
. . .0 ,a sa  P - which is unstable, and 

0a   in probability as 0  ,     

     (ii) for 0  , 
0  is only invariant measure and the 

Lyapunov exponent of 
0  with respect to 

0  vanishes,  

     (iii)  for 0  ,
  has exactly two ergodic invariant 

measure in 0( ) :I    which is unstable, and a   

with a random variable . .0 a sa  P , which is stable, and 

0a   in probability as 0  , 

    Definition    4  (Stochastic Pitchfork Bifurcation) A 

family of RDS ( )    on  undergoes a Stochastic 

Pitchfork Bifurcation at 0  , if  

    (i) for 0  ,
0  is only invariant measure of 

 , which 

is stable for 0   and the Lyapunov exponent of 
0  with 

respect to 
0  

vanishes;  

    (ii) for 0   the system possesses besides 
0 , which is 

unstable, exactly two more ergodic invariant measure 
1

  ,
2

   in ( )I  , described by ,i

i

a
  1,2,i   with 

random variable 
1 0a  ,

2

. .0 a sa  P and ,i

 1,2,i   

are stable;  

    (iii) We have 0ia   in probability as 0,  1,2.i   

     
Definition    5  (Stochastic Hopf Bifurcation） 

    In the viewpoint of phenomenological bifurcation:  

    The stationary solution of the FPK equation which is 

corresponded to the stochastic differential equation changes 

from one peak into crater.  

     In the viewpoint of dynamical bifurcation:  

     (i) If one of the invariant measures of the stochastic 

differential equation loses its stability and becomes unstable 

(i.e. two Lyapunov exponent are positive), moreover the 

rotation number is not zero. Meanwhile there at least appear 

one new stable invariant measure.  

     (ii) The global attractors of the stochastic differential 

equation change from a single point set into a random 

topological disk (the closure of the unstable manifold of the 

unstable invariant measure).  

     If the stochastic bifurcation of a stochastic differential 

equation has the above characters, then the stochastic 

differential equation admits stochastic Hopf  bifurcation. 

    Definition    6  (Stochastically Stable) The trivial solution 

0 0( , , )x t t x  of stochastic differential equation is said to be 

stochastically stable or stable in probability if for every pair 

of (0,1)  and 0  , there exists a 
0( , , ) 0t      

such that  

          0 0{ ( , , )P x t t x  for all 0} 1t t    ,  

whenever 0x  . Otherwise, it is said to be stochastically 

unstable. 

 
III.  STOCHASTIC STBILITY AND BIFURCATION 

    Now that we characterized in detail the solutions of 

equation (2.1), we are in a position address the dynamics of 

three prominent bifurcations occurring in the study of 
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random dynamical systems: the transcritical, pitchfork and 

Hopf bifurcations with power diffusion coefficients. 

A.     Stochastic Transcritical Bifurcation 

    In this section we first study the dynamics of an SDE with 

fractional Brownian motion(fBm) given by the normal form 

of the transcritical bifurcation, before addressing the 

universality of these behaviors. 

      We consider the stochastic differential equation with fBm  

          
2( ) k H

t t t t tdx x x dt x dB   
                              

(3.1)
 

Theorem 3.1  For 1,k  let us denote by 
0x the 

stationary solution. We have:  

    (1) When 0 1 2H   and:  

    (i)For 0  , the fixed point 
0x of equation (3.1) is stable 

in probability and the two invariant measures are both 
0

F  

measurable;  

    (ii) For 0,   the fixed point
0x of equation (3.1) is 

unstable in probability and the invariant measure is both 
0

F measurable； 

    (2) When 1 2,H   and:  

    (i) For 

2

0
2


   , the fi xed point 

0x of equation (3.1) 

is stable in probability and the two invariant measures are 

both 
0

F  measurable;  

    (ii) For 

2

0
2


   , the fi xed point 0x  of equation (3.1) 

is unstable in probability and the invariant measure is both 
0

F  measurable;  

(3) When 1 2 1,H   and   , the fi xed point 

0x  of equation (3.1) is almost surely exponentially stable. 

Moreover, any solution almost surely reaches zero in finite 

time. 

 

Proof. We now calculate the Lyapunov exponent for 

each of these measures of the SDE(3.1). The linearized RDS 

( , , )tv D t x v   satisfies the linearized SDE(3.1) with 

fBm 
2 2 1[ 2( ( , ) )] ,H H

t t t tdv Ht t x v dt v dB       
 

hence 



2
2

0

( , , ) exp ( )
2

2 ( ( , ) ) .

H H

t

t

D t x v v t t B

s x ds


    

 


  



 

 

Thus, if
0 ( )x   is a  -invariant measure its Lyapunov 

exponent  is 

 
( )

1
lim log ( , , )
t

D t x v
t

  



                            

2
2 1 1

0

1
2lim ( ( , ) )

2

t
H N

t
t t x ds

t


   


   

 
2

2 1

0lim 2
2

H

t
t x


 


   E x x 

provided the IC 
1

0 ( )x L P   is satisfied.  

    From SDE(3.1) with fBm, we can obtain the solution of 

SDE(3.1) which is explicitly given by which is solved by 

            

2
2

2
2

( )
2

( )
2

0

( , )

.

1

H H
t

H H
s

t t B

t s s B

t x

xe

x e ds




  


  

 

 

 



   

We now determine the domain ( , )D t  and the range 

( , )R t  of  ( , )t  ： ( , ) ( , )D t R t     

    We have  

( ( , ), ), 0,

( , ) , 0,

( , ( , )), 0,

d t t

D t t

d t t













  


  
  

 

where 

           

2
2 ( )

2

0

1
( , ) 0,

H H
st s s B

d t

e ds




  


 

 
 
 
 
 


 

and 

( , ) ( , ( ) )

( , ( , )), 0,

, 0,

( ( , ), ), 0,

R t D t t

r t t

t

r t t

 





  





 

 


  
   

 

where 
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2
2

2
2

2

( ( ))
2

0

( , ) ( , ( ) )

0.

H H
t

H H
t

t t B

t s s B

r t d t t

e

e ds

 


 


  

  

 

 

 

 
 
 
 
 


 

We can now determine 

 (i) For 0 1 2,H   

[0, ( )], 0,

0, 0,

( ( ),0], 0,

d

E

d







 



 





 


 
  

 

 

(ii) For 1 2,H   

2

2

2

[0, ( )], ,
2

0, ,
2

( ( ),0], ,
2

d

E

d








 





 











 


 



 

(iii) For 1 2 1,H   

( ( ),0], , ,E d      
 

where 

2
2( ( ))

2

0

1
0 ( ) .

H H
ts s B

d

e ds




  



  

   
 
 
 
 


   

 (1)For 0 1 2H   and: 

    (i) When , the inclusion closed(IC) 1, 0



   is 

trivially satisfied and we obtain  

1( )    

so 1

   is stable for 0   and unstable for 0  .  

    (ii) When 0,  2, ( )d


 
 



 is
0

F measurable, 

hence the density p
of

2





  E satisfies the 

Fokker-Planck-Kolmogorov(FPK) equation[4] 

2
2(( ) ( , ))

( , ) 2
x x x p t x

p t x

t x





  




   

 

2

0

2

(( ( , ) ) ( , ))
0

t

x x s t ds p t x

x


 




 

which has the unique probability density solution 

( , )p t x
[4].  

    Since 

 
2 0

( ) ( ) ,x d xp x ds

 





   E E
    

the IC is satisfi ed. The calculation of the Laypunov 

exponent is accomplished by observing that 
2

2

2
2

( ( ))
2

( ( ))
2

( )
( )

( )
(

H H
t

H H
s

t t B

t
t s s B ds

e t
d

t
e


  




  


 



 


 







 

where 
2

2( ( ))
2( ) .

H H
st s s B

t e ds


  


 


   .  

Hence by the ergodic theorem 

1
( ) lim log ( ) ,

t
d t

t

  


 E
   

 

finally 

2( ) 0.      

(iii) When 0  , 3, ( )d


 
 


 is

0

F measurable. 

Since    d d 

 L L and N is even,   

( ) ( )d d  

    E E
 

thus  

3( ) 0.      

Hence, we have a D-bifurcation of the trivial reference 

measure 0 at 

2

2
D


  and a P-bifurcation of the

  at 

.p Then the SDE(3.1) with fBm admits stochastic 

Transcritical bifurcation.  

    (2) 1 2H   and:  

     (i) When , ,   the inclusion closed(IC) for 

1, 0



   is trivially satisfied and we obtain  

2

1( )
2

 
   

 

so 1

 is stable for 

2

0
2


   and unstable for 

2

0.
2


  
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    (ii)When
2

0
2


   , 2, ( )d



 
 



  is
0

F measurable, 

hence the density p
of 2

   E satisfies the 

Fokker-Planck-Kolmogorov(FPK) equation[4] 
2

2
2 2

2

(( ) )
( )2 0 (3.2)

x x x p
p x p

t x x


 


  

 
   

  
which has the unique probability density solution           

22 / 1

2

2
exp( ), 0,

x
p N x x  




    

where              

2
1

2

2
.

2
N

 



   
    

  
 

Since             

2 0
( ) ( )x d xp x dx

 





   E E , 

 

the IC is satisfied. The calculation of the Laypunov exponent 

is accomplished by observing that 
2

2

2
2

( ( ))
2

( ( ))
2

( )
( )

( )
(

H H
t

H H
s

t t B

t
t s s B ds

e t
d

t
e


  




  


 



 


 







  

where 

 

2
2( ( ))

2( ) .
H H

st s s B

t e ds


  


 


   

Hence by the ergodic theorem 
21

( ) lim log ( ) ,
2t

d t
t

 
 


  E  

finally 
2

2( ) ( ) 0.
2

 
     

 

    (iii) When

2

0,
2


   3, ( )d



 
 


 is

0

F  

measurable.  

    Since    d d 

 L L ,  

2

( ) ( )
2

d d  


     E E  

thus  
2

3( ) ( ) 0
2

 
      . 

Hence, we have a D-bifurcation of the trivial reference 

measure 0  at 
2

2
D


  and a P-bifurcation of the 

   at 

2

.
2

p


   Then the SDE(3.1) with fBm admits stochastic 

Transcritical bifurcation.  

     (3) 1 2 1,H   the inclusion closed(IC) for 1, 0



   

is trivially satisfied and we obtain 

1,2,3( )    , 

so 
1 2,    and 3

  are stable for .   

    Let us now further describe the dynamics of the solutions 

as a function of .H  

      Case 1 2 :H   We observe that for any 0,  the 

unstable deterministic fixed point becomes asymptotically 

exponentially stable when the noise parameter is large 

enough. For
2

,
2


  two symmetrical stationary 

distributions appear. For 
2

2

2


    the stationary 

distribution concentrates at zero and has a non increasing 

density diverging at zero. For 
2 ,  the probability 

density function of the stationary distribution vanishes at zero 

and has a unique maximum reached for 2 .x    There 

is hence a qualitative transition at 2 ,   or P-bifurcation. 

In comparison with the deterministic bifurcation, the loss of 

stability is delayed and noise tends to stabilize the saddle 

point.  

    • Case 0 1 2:H  the deterministic picture is 

qualitatively and quantitatively recovered: for 0  , 0x  is 

stable in probability and is the unique stationary solution, and 

for 0  is unstable in probability, two additional 

stationary solutions appear.  

    • Case 1 2 1:H   the solution 0x  is always stable in 

probability. This result can appear relatively surprising at first 

sight. Indeed, in the deterministic case,   is the exponential 

rate of divergence from the solution 0. However, adding a 

(possibly small) diffusion term proportional to  ( )Hx dB t  

 with 1 2 1H   stabilizes 0x  in probability whatever the 

value of the noise intensity. This observation, added to the 

fact that the solution is not exponentially asymptotically 

stable (though stable in probability) raises the question of 

how this convergence occurs. Starting from a positive initial 

condition, we observe that the solution is evolving in the 

half-plane 0x  and does not show any extinction clue. 

However, it suddenly reaches zero where it is absorbed after 

that random transient phase. This perfectly illustrates a 

typical behavior of the solutions of the transcritical equation 

for 1 2 1:H  the extinction time was shown to be almost 

surely finite. Moreover, trajectories that did not hit zero are 

distributed according to a quasi-stationary distributions as 

long as 1 2 1.H   Interestingly, for the first time it is 

found that the Hurst parameter affects both bifurcation 

conclusions and large deviations which is significantly 

different from the classical Brownian motion process. This 

fact is due to the long-range dependence (LRD) property of 

the fBm. 
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Theorem 3.2 For 1,0 1k H   , then the fixed point 

0x  of equation (3.1) is asymptotically stable in probability 

whatever   and 0  . 

Proof. Case 0 0.5:H  Let us consider ( ) kV x x  

as a Lyapunov functional for the dynamics. This function is 

clearly 0

2 ( )C  , i.e. it is twice continuously differentiable 

except at 0X  .Moreover, we have:  
1 2 2 2 1 3 2( ) (1 )k H kV kx x x k k Ht x      L . 

 Since we assume that 0 0.5H  and 
2 1(1 ) Hk k Ht  

 
3 2kx 

 at 0, the leading term close to 0 is of order 
1kx   

which is strictly negative for sufficiently small .x More 

precisely, there exists r  such that 
0

2 ( )rV C U  where rU  

is the open ball of radius r  and such that 0V L  for all 

rx U . Moreover, for any   such that 0 r   we have 

( )V r  and 0V c  L  for all r x   . Theorem of 

[21] therefore applies and concludes the proof of the stability 

in probability of the solution 0x whatever the parameters 

, 0   . 

Case 0.5 1:H   Let us consider ( ) kV x x as a 

Lyapunov functional for the dynamics. This function is 

clearly
0

2 ( )C  , i.e. it is twice continuously differentiable 

except at 0X   . Moreover, we have: 

 
1 2 2 2 1 3 2( ) (1 ) .k H kV kx x x k k Ht x      L  

Since we assume that 0 0.5H   and 
1kkx   at 0, the 

leading term close to 0 is of order 
2 2 1 3 2(1 ) H kk k Ht x     which is strictly negative for 

sufficiently small x . More precisely, there exists r  such 

that 
0

2 ( )rV C U  where rU  is the open ball of radius 

r and such that 0V L  for all .rx U Moreover, for any 

  such that 0 r   we have ( )V r  and 

0V c  L  for all r x   . Theorem of [21] 

therefore applies and concludes the proof of the stability in 

probability of the solution 0x  whatever the parameters 

, 0   . When 0.5,H   then [1/ 2,1)k .  

     Theorem 3.3 For 1,k  let us denote by 0x the 

stationary solution 0X   a.s. for all t . We have: 

    (1)For 0 1 2H   and:  

    (i) When 0  , the fixed point 0x of equation (3.1) is 

stable in probability and the two invariant measures are both 
0

F  measurable;  

    (ii) When 0  , the fixed point 0x of equation (3.1) is 

unstable in probability and the invariant measure is both 

0

F measurable;  

    (2) For 1 2 1H  and , the fixed point 0x of 

equation (3.1) is not stable in probability. 

Proof. Case 0 1 2:H   Let us consider 

2( )V x x  as a Lyapunov functional for the dynamics. This 

function is clearly
0

2 ( )C  , i.e. it is twice continuously 

differentiable except at 0.X  Moreover, we have: 

   
2 2 2 1 22 ( ) H kV x x x Ht x    L .  

Since we assume that 0 1 2H   and 
32x  at 0, the 

term VL is equivalent to 
22 x and hence locally has the 

sign of . For 0,  we can directly apply theorem [21]. 

For 0  , we use ( ) log( )V x x   again and conclude 

that 0 is not stable in probability.  

Case 0.5 1:H  Let us consider
2( )V x x as a 

Lyapunov functional for the dynamics. This function is 

clearly
0

2 ( ),C   i.e. it is twice continuously differentiable 

except at 0.X  Moreover, we have: 

  
2 2 2 1 22 ( ) H kV x x x Ht x    L .  

Since we assume that 1/ 2 1H   and 
32x  at 0, the term 

VL is equivalent to 
2 2 1 4HHt x 

 and hence 0V L  , we 

can directly apply theorem [21]. For   we conclude that 

0 is not stable in probability.  

 

B. Stochastic Pitchfork Bifurcation 

    In this section we first study the dynamics of an SDE with 

fractional Brownian motion(fBm) given by the normal form 

of the pitchfork bifurcation, before addressing the 

universality of these behaviors.  

    We consider the supercritical stochastic pitchfork 

bifurcation with fBm 

 
3( )

k H

t t t t tdx x x dt x dB                          (3.3)                          

    Theorem 3.4 For 1 2,H   let us denote by 0x the 

stationary solution 0X   a.s. for all t. We have:  

    (1)For 1k   and:  

    (i) When 

2

0
2


   , the fixed point 0x of  equation (3.1) 

is stable in probability and the only invariant measure is 

0



  ;  

    (ii) When 
2

0
2


   , the fixed point 0x  of equation (3.1) 

is stable in probability and the three forward Markov measure 

0



  and , ( ) ,d



   
 
where  

 2

1
0 22 ( )

( ) : 2 .
H
tt t B dt

d e
   

 


 


   

    (2)For 1,k  the fixed point 0x of equation (3.1) is 

asymptotically stable in probability whatever  and 

0  .  

    (3) For 1,k  0x is  

    –stable in probability for 0    

    –unstable in probability for 0   

    Proof.  (1) Case k=1.  
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We now calculate the Lyapunov exponent for each of 

these measures of the SDE(3.3). The linearized RDS 

( , , )tv D t x v   satisfies the linearized SDE(3.3) with 

fBm 
2 2 1 2( 3( ( , ) ) ,(3.4)H H

t t t tdv Ht t x v dt v dB       

 hence  



2
2

2

0

( , , ) exp ( )
2

3 ( ( , ) )) .

H H

t

t

D t x v v t t B

s x ds


    

 


  



 
 

Thus, if 
0 ( )x    is a  -invariant measure its Lyapunov 

exponent is 

1
( ) lim log ( , , )

t
D t x v

t
   




 

          

  
2

2 1 1

0

1
2lim ( ( , ) )

2

t
H N

t
t t x ds

t


   


   

 

           

2
2

03
2

x


   E   

provided the IC 
1

0 ( )x L P  is satisfied.  

    From SDE(3.1) with fBm, we can obtain the solution of 

SDE(3.1) which is explicitly given by which is solved by 
2

2

( )
2

1 2

2( ( ))
2 2

0

( , ) .

1 2

H
t

H
s

t t B

t s s B

xe
t x

x e ds


  




  

 

 

 


 
 

 
 


 

We now determine the domain ( , )D t  and the range 

( , )R t   of ( , )t  : ( , ) ( , )D t R t     

    We have  

( , )

( ( , ), ), 0,

, 0,

( , ( , )), 0,

D t

d t t

t

d t t













  


  
  

 

where 

 

2
1 2

( ( ))
2

0

1
( , )

2

0,

H
st s s B ds

d t

e




  


 


 
 
 
 





 
and  

 

( , ) ( , ( ) )

( , ( , )), 0,

, 0,

( ( , ), ), 0,

R t D t t

r t t

t

r t t

 





  





 

 


  
   

 

where 

    

 

2

2

2

1 2

2

0

, ,

0.

2

H
t

H
t

t t B

s s Bt

r t d t t

e

e ds

 


 


  

  

 

 
   

 

 

 
 
 
 
 



 

We can now determine 

 

  

2

2

2

0, , ,
2

0, ,
2

( ,0 , ,
2

d

E

d








 





 






   



 


 



 

where 

 

 
2

1 2

2

0

0

1
.

2

H
ts s B

d

e ds




  



 
    

 



  
 
 
 
 


 

    From Proposition 2.1, there are ergodic invariant measures 

of SDE(3.1) with fBm as follows: 

    (i) For 

2

0,
2


   the only invariant measure 

is 0
  ； 

    (ii) For 

2

0,
2


   the fixed point 0x  of equation (3.1) 

is stable in probability and the three forward Markov 

measure 0



  and
 , ,

d



 
   where 

 

1

0 2 22
( ) : 2 .

Ht t Btd e dt
   






 



 
 
 

   
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We have  
2

2 .
2

d


  E Solving the forward 

Fokker-Planck-Kolmogorov(FPK) equation[12] 

2
3

2 2
*

2

2 (( )
0

x x x p
x p

L p
x x









  
    

     
 

 

yields 

     (i) 0 p  for all ，，  

     (ii) for 0
2

2




  

2

2
1

2

2
exp , 0,q N x x x




 






  
   

 
 

   .q x q x 

    

     Naturally the invariant measure
 , d



 
   are those 

corresponding to the stationary measures ,q


Hence all 

invariant measure are Markov measures. 

    The two families of densities   2

0
2

q  



 
clearly undergo 

a P-bifurcation at the parameter value
2

.
2

p


   

    By Proposition 2.1, the Lyapunov exponent of the 

linearized SDE(3.3) with respect to the three measure is 

    (i) for  
2

0 , ,
2

  
        

    (ii)for 
 , ,

d



 
    

 
2

2 23 2 .
2

d




         E  

    Hence, we have a D-bifurcation of the trivial reference 

measure 0 at
2

2
 D

and a P-bifurcation of the 
  at 

2

.
2

P


  Then the SDE(3.4) with fBm admits stochastic 

pitchfork bifurcation. 

    (2)Case k< 1. 

    Let us consider   kxxV  as a Lyapunov functional for the 

dynamics. This function is clearly  0

2 ,C  i.e. it is twice 

continuously differentiable except at X = 0 . Moreover, we 

have: 

1 3 2 3 2(1 )
( ) .

2

k kk k
V kx x x x  
  L  

Since we assume that 1k  and
2kkx  at 0,the leading term 

close to 0 is of order
2 3 2(1 ) / 2kk k x   which is strictly 

negative for sufficiently small .x More precisely, there 

exists 0r such that  rUCV 0

2  where rU is the open ball 

of radius r  and such that 0V L for all rUx .Moreover, 

for any such that 0 r  we have  rV and V c L  

0 for all  xr .Theorem of [21] therefore applies and 

concludes the proof of the stablility in probability of the 

solution 0x whatever the parameters  , 0  

and [1 2,1).k  

   (3)Case k> 1 

    Let us consider   2xxV  as a Lyapunov functional for the 

dynamics. This function is clearly  0

2C , i.e. it is twice 

continuously differentiable except at X = 0 . Moreover, we 

have: 

                  
2

3 22
2

kV x x x x


  L . 

Since we assume that 1k and
42x at 0,the term VL is 

equivalent to
22 x and hence locally has the sign 

of . For 0,  we can directly apply theorem of [21]. 

For 0 ,we use    xxV log again and conclude that 0 

is not stable in probability. 

 

    Theorem 3.5 For 0 1 2,H   let us denote by 0x the 

stationary solution 0X  a.s. for all .t  We have: 

    (1)For 1k  and: 

    (i) 0,   the fixed point 0x of equation (3.1) is stable in 

probability and the only invariant measure is 0
  ; 

    (ii) 0,  the fixed point 0x of equation (3.1) is stable in 

probability and the three forward Markov measure 

and 0
   and  ,d 


 

 ， where 

    (2)For 1k  and: 

    (i) 0,  0x is stable in probability and no other 

stationary solution exist. 

    (ii) 0,  0x is unstable in probability for 0 and 

stationary solution exist. 

    (3)For 1k  and: 

    (i) 0,  0x is stable in probability and no other 

stationary solution exist. 

    (ii) 0,  0x is unstable in probability for 0 and 

stationary solution exist. 

 

Proof. (1) Case k=1 

    From SDE(3.3) with fBm, we have the linearized RDS tv  

 , ,D t x v  satisfies the linearized SDE(3.3) with fBm 

   22 2 1 3 ,

,

H

t t

H

t t

dv Ht t x v dt

v dB

   



  



         (3.5) 

hence 

 

    
2

22

0

, , exp

3 , .
2

t
H H

t

D t x v v

t t B s x ds

 


    



 
   

 


 

Thus, if
 0x 

  is a -invariant measure its Lyapunov 

exponent is 
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provided the IC  1

0x L P  is satisfied. 

    From SDE (3.6) with fBm, we can obtain the solution of 

SDE(3.6) which is explicitly given by which is solved by 
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    From Proposition 2.1, there are ergodic invariant measures 

of  SDE (3.6) with fBm as follows: 

    (i) For 0,  the only invariant measure is 0
  ； 

    (ii) For 0,  the fixed point 0x of equation (3.1) is 

stable in probability and the three forward Markov 

measure 0

   and
 , ,

d



 
   where 
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We have  
2

2 .
2

d


  E Solving the forward 

Fokker-Planck-Kolmogorov(FPK) equation[4] 
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yields 

    (i) 0 p for all ,,  

 

    (ii) for 0     , 0.q x q x x 

     

    Naturally the invariant measure  , d



 
   are those 

corresponding to the stationary measures ,q


Hence all 

invariant measure are Markov measures. 

    The two families of densities  
0



q clearly undergo a 

P-bifurcation. 

    By Proposition 2.1, the Lyapunov exponent of the 

linearized SDE (3.6) with respect to the three measure is 

    (i) for      ,0 , 

    (ii) for 
    2

, , 3 2 .
d

d


 

 
          E  

    Hence, we have a D-bifurcation of the trivial reference 

measure 0 at 0D and and a P-bifurcation of the
  at 

2

.
2

p


  Then the SDE (3.4) with fBm admits stochastic 

pitchfork bifurcation. 

    (2)Case k< 1 

    Let us consider   kxxV  as a Lyapunov functional for 

the dynamics. This function is clearly  0

2 ,C  i.e .it is twice 

continuously differentiable except at X = 0 . Moreover, we 

have: 

        1 3 2 2 1 3 21 .k H kV kx x x k k Ht x      L  

Since  we  assume  that  1k  and       2 2 11 Hk k Ht    

 
3 2kx 

at 0, the leading term close to 0 is of order
kxk which 

is strictly negative for sufficiently small x and 0 ;the 

leading term close to 0 is of order
kxk which is strictly 

positive for sufficiently small x and 0,  we can directly 

apply theorem of [2]. For 0 , 0x is stable in probability; 

for 0 , 0x is stable in probability. 

    (3)Case k> 1 

    Let us consider   2xxV  as a Lyapunov functional for the 

dynamics. This function is clearly  0

2C , i.e. it is twice 

continuously differentiable except at X = 0 . Moreover, we 

have: 

 3 2 2 1 22 2 .H kx x x Ht x     

Since we assume that 1k and kH xHt 21222  at 0 , the 

term VL is equivalent to 22 x and hence locally has the 

sign of  . For 0 ,we can directly apply theorem of [21], 

0x  is stable in probability. For 0 , we use   log( )V x x   

again and conclude that 0x is not stable in probability. 

 

    Theorem 3.6 For 1 2 1,H  , let us denote by 0x  

stationary solution X = 0 a.s.for all .t  We have: 

    (1)For 1, 0k X  is asymptotically stable in probability 

whatever  and 0 . 

    (2)For 1, 0k X  is unstable in probability 

for  and 0 . 

Proof. (1) Case k= 1 

    From SDE (3.3) with fBm, The linearized 

RDS  vxtDvt ,,  

satisfies the linearized SDE(3.3) with fBm 

   22 2 1 3 ,

,

H

t t

H

t t

dv Ht t x v dt

v dB

   



  



(3.6) 

hence 
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Thus, if
 0x 

  is a -invariant measure its Lyapunov 

exponent is 
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Since we assume that 1k , then   0 for  . 

    (2)Case k< 1 

    Let us consider   kxxV  as a Lyapunov functional for 

the dynamics. This function is clearly  0

2C , i.e. it is twice 

continuously dierentiable except at X = 0 . Moreover, we 

have: 

   1 3 2 2 1 3 21k H kV kx x x k k Ht x      L . 

Since we assume that 1k  and
2kkx  at 0,the leading term 

close to 0 is of order
2 3 2(1 ) / 2kk k x   which is strictly 

negative for sufficiently small .x More precisely, there 

exists 0r such that  rUCV 0

2  where rU is the open ball 

of radius r  and such that 0V L for all rUx .Moreover, 

for any such that 0 r  we have  rV and V c L  

0 for all  xr .Theorem of [21] therefore applies and 

concludes the proof of the stablility in probability of the 

solution 0x whatever the parameters  , 0 and 

[1 2,1).k  

    (3)Case k> 1 

    Let us consider   2xxV  as a Lyapunov functional for the 

dynamics. This function is clearly  0

2C , i.e. it is twice 

continuously differentiable except at X = 0 . Moreover, we 

have: 

 3 2 2 1 22 2 .H kx x x Ht x     

Since we assume that 1k  and
2kkx  at 0,the leading term 

close to 0 is of order
2 2 1 22 H kHt x 

which is strictly 

negative for sufficiently small .x More precisely, there 

exists 0r such that  rUCV 0

2  where rU is the open ball 

of radius r  and such that 0V L for all rUx .Moreover, 

for any  such that 0 r  we have  rV and 

V c L  

0 for all  xr .Theorem of [2] therefore applies and 

concludes the proof of the stablility in probability of the 

solution 0x whatever the parameters  , 0 . 

 

C. Stochastic Hopf Bifurcation 

    We study in this section the stochastic Hopf bifurcation 

with multiplicative noise. For simplicity, we will consider 

that the stochastic perturbations are driven by a single with 

fractional Brownian motion. 

    We consider the stochastic Hopf normal form with fBm 
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             (3.7) 

where and  correspond to the parameters of the Hopf  

bifurcation, ttt iYXZ  and 1 and 2 are two 

parameters globally governing the amplitude of the stochastic 

perturbation. 

    The deterministic process tZ corresponding to 0,tX   

0tY  for all 0t is solution of  (3.7) and is univocally 

defined by the fact that the modulus of tZ is null. We denote 

by tR the modulus of tZ and by tR its argument 

    Lemma 1. The modulus of the variable tt ZR  and the 

argument t  satisfy the equations:  

 

 

2 2 1 2 1 3
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(3.8) 

where ttttt YXZR ,22  given by the arctan

t

t

Y

X
 

When 0tX ，added or subtracted when 0tX  

depending on the sign of tY ，and 2 if tt YX  ，0 . 

    Proof. Let  ,t tX Y be a solution of the Hopf equations 

(3.7). We apply fractional oIt ˆ formula to the 

variable
22

ttt YXR  .Then we have 
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The argument tR  is given by arctan t
t
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X

Y
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plus 

possibly constants depending on the sign of tX and  tY . 

Applying fractional oIt ˆ  formula again yields 
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which ends the proof of the lemma. 

    It is important to note that the equation on the modulus is 

uncoupled of the phase equation on tR The modulus of 

 ,t tX Y is therefore solution of a stochastic differential 

equation of type stochastic pitchfork bifurcation . Moreover, 

when 1k ,the equations take the simpler form: 
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and hence the variable tR is solution of a stochastic pitchfork 

bifurcation. By application of theorems 3.4-3.6, it is easy to 

establish the following: 

    Theorem 3.7 For 1k and: 

(i) 1 2,H   the null solution of the supercritical Hopf 

equations is almost surely exponentially stable if 

2

2

2

2

1 



 and asymptotically stochastically unstable 

if
2

2

2

2

1 



 . In that case, there exists a new 

stochastically  stable stationary solution with distribution: 
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2 2 2
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 

 
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   

 L . 

The null solution of the subcritical Hopf equations is almost 

surely exponentially unstable if
2

2

2

2

1 



 .It is 

asymptotically stochastically unstable if
2 2

1 2

2

 



  and 

stochastically stable if
2

2

2

2

1 



  

    (ii) 0 1 2,H   the null solution of the supercritical 

Hopf  equations is almost surely exponentially stable 

if 0 and asymptotically stochastically unstable if 0 . 

    (iii) 1 2 1,H   the null solution of the supercritical 

Hopf equations is almost surely exponentially stable 

if 2

2

2

1   and asymptotically stochastically unstable 

if
2

2

2

1   . 

Remark. Let us emphasize the fact that the case 

0 0.5H   is substantially different from the general case: 

indeed, we had seen that the singular point was always 

stochastically stable. Surprisingly here the stability of zero 

depends on the relative values of the real and imaginary parts 

of the noise. 

 

Theorem 3.8 For 1k .In the case of the supercritical 

 1  stochastic Hopf bifurcation, we have: 

    (i) 1 2,H   the null solution of the supercritical Hopf 

equations is almost surely exponentially stable if 21    

and asymptotically stochastically unstable if 12   . 

    (ii) 0 1 2,H   the null solution of the supercritical 

Hopf equations is almost surely exponentially stable 

if 0 and asymptotically stochastically unstable if 0.   

(iii)1 2 1,H  the null solution of the supercritical 

Hopf equations is almost surely exponentially stable 

whatever  the parameters  . 

 

    Proof. (1) The case 0 0.5,H   falls in the general 

analysis developed in Theorem 3.5.The general analysis 

hence applies and directly leads to the conclusion of the 

proposition. 

    (2)For 1 2 1,H   Let us consider   kxxV  as a 

Lyapunov functional for the dynamics. This function is 

clearly  0

2C , i.e. it is twice continuously differentiable 

except X = 0 . Moreover, we have: 
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1 2 2 1 3
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2 2 1 3 2
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k H

H k

V kx Ht x x

k k Ht x
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 
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 

L
 

Since we assume that 1k and
2 kkx at 0 ,the leading 

term close to 0 is of order   2 2 1 3 2

11 H kk k Ht x    which 

is strictly negative for suciently small x whatever the 

parameters .  

(3)For 1 2.H  Let us consider   kxxV  is  0

2C  

around zero, positive, diverges at zero, we have: 
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and hence is negative closed of zero. 

 

    Theorem 3.9 For 1k . In the case of the supercritical 

 1  stochastic Hopf bifurcation, we have: 

  (1)When 1 2,H   the null solution of the supercritical 

Hopf equations is almost surely exponentially stable 

if 02

2  and asymptotically stochastically unstable 

if 02

2  .In that case, there exists a new stochastically 

stable stationary solution with distribution. 

    (2)When 0 1 2,H    the null solution of the 

supercritical Hopf equations is almost surely exponentially 

stable if 0 and asymptotically stochastically unstable 

if 0 . 

    (3)When 1 2 1,H   the null solution of the 

supercritical Hopf equations is asymptotically stochastically 

unstable whatever the parameters  . 

Proof. (1) When 2/1H . Let us consider   2xxV   as a 

Lyapunov functional for the dynamics. This function is 

clearly  0

2C ,i.e. it is twice continuously differentiable 

except at 0X . Moreover, we have: 

 
2

2 3 21
22

2

kV x x x x


     
 

L . 

Since we assume that 1k  and 
42x  at 0, the term VL  

is equivalent to   22

22 x  and hence locally has the sign 

of 
2

2  . For 02

2  , we can directly apply 

theorem of [21]. For 02

2  , we use    xxV log  

again and conclude that 0 is not stable in probability. 

    (2) When 5.00  H . Let us consider   2xxV   as a 

Lyapunov functional for the dynamics. This function is 

clearly  0

2C , i.e. it is twice continuously differentiable 

except at 0X . Moreover, we have: 

 2 2 1 3 2 2 1 2

2 12 2 .H H kx Ht x x Ht x      
   

Since we assume that 1k  and 
kH xHt 21222   at 0, the 

term VL is equivalent to 
22 x  and hence locally has the 

sign of  . For 0 , we can directly apply theorem 

1.4.V  of [17], 0x  is stable in probability. For 0 , we 

use    xxV log  again and conclude that 0x  is not 

stable in probability. 

    (3) When 15.0  H . Let us consider   2xxV   as a 

Lyapunov functional for the dynamics. This function is 

clearly  0

2C , i.e. it is twice continuously differentiable 

except at 0X . Moreover, we have: 

 2 2 1 3 2 2 1 2

2 12 2 .H H kx Ht x x Ht x      
 

. 

Since we assume that 1k  and 
42x  at 0, the leading 

term close to 0 is of order 
kH xHt 122

22  which is strictly 

positive for suffciently small x  whatever the parameters 

 .  

 

4 Example 

    Example 1. Let us consider the Hopfield neural networks 

model[23], classically describing the behavior of a cortical 

column. In that model, the voltage x  of a typical neuron in 

the column is solution of the equation: 

     ,H

t t t t tdx ax bS x dt g x dB                (4.1) 

where  xS  is a smooth sigmoidal function describing the 

voltage-to-rate transformation, and b  is the typical 

connectivity strength. We choose here    xxS tanh  with 

0   the sharpness coeffcient of the sigmoid and 

  k

t xxg   with 
2

1
k . This equation can be locally 

reduced to the normal form of the pitchfork bifurcation since 

the ow is symmetrical,and we obtain using the same 

transformation as performed above: 

    
H

t

kk

tttt

dB

dtbbad









1

3

2

,,

.      (4.2) 

When 15.0  H , let us denote by 0x  the stationary 

solution 0t  a.s. for all t . We have: 

 For 1k  , 0t   is asymptotically stable in 

probability whatever , ,a b   and 0.   

  For 1k  , 0t  is unstable in probability for  

         , ,a b    and 0   

    Example 2. Let us consider a Wilson and Cowan neural 

network[23] composed of an excitatory and an inhibitory 

population. The network equations in that case read: 

      

 

      

 

1 1 1 2

1

1 1 2 2

2 2 1 2

1

1 2 2 1

,

,

k H

t t

k H

t t

dx x t bS x S x dt

x x x dB

dx x t bS x S x dt

x x x dB

 

 





    

  


   


 

                (4.3) 

where     tanhS x x  with 0  and 2 2

1 2 .tx x x  In 

the deterministic case, it is straightforward to show that the 

system undergoes a Hopf  bifurcation at 1.    Let us now 

consider the equation satisfied by the modulus t tx   . 

Using fractional It^o's formula we obtain: 

   

 

2 12
1 2

1

2 2 2 1

1 2 2

1 ,
2

,

,

k

t t

k H

t t

k k H

t t t t

d F x x dt

dB

d O dt dB


  

 

       



 

  
      
 

 

     

 

   

                                                                               (4.4)                           

where 
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     

    

 

3
4 4 3 3 4

1 2 1 2 1 2 2 1

3
2

2 2 2 2 4

1 2 2 1

3
3 4

,
3

2
3

.
3

F x x x x x x x x O

x x x x O

O












 



     

    

  

 

When 0.5 1H  , then the dynamics of the system can 

hence be analyzed using the above analysis: 

 For 1,k  the null solution of the supercritical Hopf 

equations is almost surely exponentially stable 

if 1 2   and asymptotically stochastically unstable 

if 
1 2 .   

 For 1,k   the null solution of the supercritical Hopf 

equations is almost surely exponentially stable whatever 

the parameters  .   

  For 1,k   the null solution of the supercritical Hopf 

equations is asymptotically stochastically unstable 

whatever the parameters  .   
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