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 

Abstract. The purpose of this paper is to investigate the 

stochastic bifurcation and stability problem of the Aeroelasticit 

-y of two-dimensional supersonic lifting surfaces with delay 

term. Applying Hopf bifurcation theory, Lyapunov exponent 

and invariant measure theory, we analyze the D- and 

P-bifurcation of the stochastic system. The analysis is based on 

the reduction of the infinite-dimensional problem to one 

described on a two-dimensional stochastic center manifold. 
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I. INTRODUCTION 

    Because of its evident practical importance, the study of 

the flutter instability of flight vehicle constitutes an essential 

prerequisite in their design process. The flutter instability can 

jeopardize aircraft performance and dramatically affect its 

survivability. Moreover, the tendency of increasing structural 

flexibility and maximum operating speed increases the 

likelihood of the flutter occurrence within the aircraft 

operational envelope. As a result of the considerable 

importance of this problem, a great deal of research activity 

devoted to the aeroelastic active control and flutter 

suppression of flight vehicles was carried out. In this sense, 

the reader is referred to a sequence of issues in Refs[1-5], 

where valuable contributions to this topic have been supplied. 

    As it clearly appears, within this problem, two principal 

issues deserve special attention: 1) increase, without weight 

penalties, of the flutter speed, and 2) possibilities to convert 

unstable limit cycles into stable ones. While the achievement 

of 1) can result in the expansion of the flight envelope, the 

conversions mentioned in 2) would make it possible to 

operate in close proximity of the flutter boundary without the 

danger of encountering the catastrophic flutter instability, but 

in the worst possible scenario, crossing the flutter boundary 

that features a benign character. In contrast to the 

catastrophic flutter boundary in which case the amplitude of 

oscillations increases exponentially, in the case of benign 

flutter boundary, monotonic increase of the oscillation 

amplitude occurs in cases 1) and 2) respectively. And, as a 

result, the failure can occur only by fatigue.  It clearly appears 

that both issues 1) and 2) are related to controlling Hopf 

bifurcations. In particular, issue 1) implies increase of the  

stability of an equilibrium and noise of the occurrence of 

Hopf bifurcations[6-9]whereas issue 2) is related to 

controlling Hopf bifurcations once a periodic vibration has 

been initiated[10-15]. Recently, the theory of random 
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dynamical system provides a very powerful mathematical 

tool for understanding the limiting behavior of stochastic 

system. It has been applied to engineering, respiratory 

physiology, chemical plants, mechanical systems, fluid 

dynamics, secure communications, economics and biological 

systems[16-21]. Our purpose in this paper is to investigate 

the stochastic dynamical behavior for the system (2.1) by 

applying the singular boundary value theory, Lyapunov 

exponent and the invariant measure theory, the direction of 

the Hopf bifurcation and the stability of bifurcating periodic 

solutions are also determined. 

 

II. STOCHASTIC AEROELASTIC MODEL 

    This investigation is based on a geometrical and 

aerodynamic nonlinear model of a wing section of the 

high-speed aircraft incorporating an active control capability. 

As concerns the nonlinear unsteady aerodynamic lift and 

moment, these are obtained through the integration of the 

pressure difference and of its moment with respect to the 

pitching axis, respectively, on the upper and lower surfaces of 

the airfoil. To this end, the third-order approximation of the 

piston theory aerodynamics[10-15](PTA), as given by 
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is considered, where  is polytropic gas coefficient. Here in 
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denotes the downwash velocity normal to the lifting 

surface    /2 pa where sgn(z) assumes the value 1 or 

− 1 for 0z  and 0z , respectively. In addition, 

))(()()( 0bxxtthtw    

denotes the transversal displacement of the elastic 

surface; )(0 eax  is the dimensionless streamwise position 

of the pitch axis measured from the leading edge; , ,p    

U and a are the pressure, the air density, the airflow speed, 

and the speed of sound of the undisturbed flow, respectively; 

and 1/ 2   MM is an aerodynamic correction factor 

that enables one to extend the validity of the PTA to the entire 

low-supersonic/hypersonic-speed range. 

    As there also exist many stochastic factors affecting and 

disturbing the realistic environment considering the change 

of the twist angle about the pitch axis. We think it is 

reasonable and necessary to add random terms in the 

aeroelastic model. In the context of the inclusion of the 
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structural and aerodynamic nonlinearities, of the linear and 

nonlinear controls and of the associated noise and time delay, 

in conjunction with the typical cross section with pitch-and 

plunge degrees of freedom, the dimensionless stochastic 

aeroelastic equations representing an extension of those in 

Refs[18,26, 28] are written as 
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and )(),(/)()( thbthtx  is the twist angle about the 

pitch axis, )(t is the multiplicative random excitation and 

)(t is the external random excitation directly(namely 

additive random). )(t and )(t are independent, in 

possession of zero mean value and standard variance Gauss 

white noises. i.e.  [ ( )] [ ( )] 0, [ ( ) ( )]E t E t E t t        

( ), [ ( ) ( )] ( ), [ ( ) ( )] 0.E t t E t t              An-

d ),( 21  is the intensities of the white noise, and )(tL and 

)(tM denote the dimensionless aerodynamic lift and 

moment, respectively. The meaning of the remaining 

parameters can be found in the nomenclature (see also 

Refs[1-5,10-15]). In Eq.(2.1), the parameter B  identifies the 

nature of the structural nonlinearity of the system in the sense 

that, corresponding to 0B  or 0B , the structural 

nonlinearities are soft or hard, respectively, whereas for 

0B the system is structurally linear. The linear and nonli- 

near active controls are given in terms of two normalized 

control gain parameters 1  and 2 , respectively. 

    A mathematical model is generally the first approximation 

of the considered real system. More realistic models should 

include some of the stochastic factors affecting and past 

states of the system, that is, the model should include noise 

and time delay. The noise and time delay in control can occur 

either beyond our will or it can be designed as to modify the 

performance of the system. For this reason, as a necessary 

prerequisite, a good understanding of its effects on the flutter 

instability boundary and its character (benign or catastrophic) 

is required. 

    To capture the effect of noise )(t , )(t and time delay 

 , introduced in the related terms 1 and 2 , let ,1xx   

).(,,, 22432   txxxxxx t
 Then, one can 

rewrite Eqs.(2.1) as a set four first-order differential equatio- 

ns: 
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where 666
~aaa c  is the bifurcation parameter, all of the 

coefficients that are provided in[12]. It is obvious that there 

exist a unique equilibrium point Q(0, 0, 0, 0). 

    For convenience in the following analysis, rewrite Eqs.(2.1) 

in the vector form: 
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where ,, 4Fx A and B are 4 4 matrices. , ,A B and 
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respectively. 

    Hopf bifurcation has been extensively studied using many 

different methods[23-28] for example, Lyapunov quantity 

used in the context of the supersonic panel flutter[13-15] 

where the effects of structural, aerodynamical, and physical 

nonlinearities have been incorporated. In Refs[11,15] the 

dynamic behavior of the system without noise and time delay 

in the control was studied in the vicinity of a Hopf bifurcation 

critical point. In particular, the effect of the active control on 

the character of the flutter boundary (where the Jacobian has 

a purely imaginary pair) is investigated. It is shown that for 

different flight speeds, stable (unstable) equilibrium and 

stable (unstable) limit cycles exist. 

    The effect of the noise and time delay involved in the 

feedback control will be considered in this paper. Nonlinear 

systems involving time delay have been studied by many 

authors[5,12,13]. In the past two decades, there has been 

rapidly growing interest in bifurcation control[1-5,10-15] 

There are a wide variety of promising potential applications 

of  bifurcation and chaos control. In general, the aim of 

bifurcation control is to design a controller such that the 

bifurcation characteristics of a nonlinear system undergoing 

bifurcations can be modified to achieve some desirable 

dynamical behaviors, such as changing a subcritical Hopf 
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bifurcation to supercritical, eliminating chaotic motions, etc. 

In this context, many applications have been found, for 

example, in the areas of mechanical systems, fluid dynamics, 

biological systems, and secure communications. Although 

effects of delay time on the Aeroelastic model have been 

extensively investigated [1-5,10-15], there have been no such 

studies on the effect of multiplicative noise, to the authors’ 

knowledge’ . We are interested in the stochastic bifurcation, 

which is one of the interesting phenomena induced by noise 

(Refs. [16-21,25-29], related references therein). The main 

attention is focused on Hopf bifurcation. 

    As the first step, we analyze the stability of the trivial 

solution of the linearized system of Eq.(2.3), which is given 

by 

.),()()(  xtBxtAxtx                           (2.4) 

The characteristic function can be obtained by substituting 

the trial solution ,)( tcetx  where c is a constant vector, 

into the linear part to find 

,0)det(),( 6   BeAIa                       (2.5) 

where I denotes the identity matrix. It can be shown[5] that 

the number of the eigenvalues of the characteristic equation 

(2.5) with negative real parts, counting multiplicities, can ch- 

ange only when the eigenvalues become pure imaginary pairs 

as the time delay   and the components of A and B are 

varied. 

    It is seen from Eq.(2.5) that when 
1 2 6 1 25 ( ) (a b b b a    

6 )a none of the roots of ),( 6a is zero. Thus, the trivial 

equilibrium 0x becomes unstable only when Eq.(2.5) has 

at least a pair of purely imaginary roots i  ( i is the 

imaginary unit), at which a Hopf bifurcation occurs. 

    To obtain the explicit analytical expressions for the 

stability condition of Hopf bifurcation solutions, system (2.1) 

should be reduced to its center manifold[12,30-32]. While 

studying 

the critical infinite dimensional problem on a two-dimension- 

al stochastic center manifold, we express the delay stochastic 

equation as an abstract stochastic evolution equation on 

complete probability space. By the centre manifold theorem 

and Hopf bifurcations[12,30-32], we obtain the equation (2.1) 

of the stochastic center manifold: 
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where ( )H y represents the nonlinear terms contributed from 

the original system to the stochastic center manifold. 

    The lowest-order nonlinear terms of the stochastic center 

manifold, needed to determine the solutions, are 

3( ) (0) ( ) (0)H y F y     

3 3

5 2 7 2 1 2

3

3 3

5 2 7 2 1 2

3

3 2 2 3

11 1 12 1 2 13 1 2 14 2 1 1 2 2

3

3 2

21 1 22 1 2

0

0

( (0) ) ( ( ) ) ( (0) (0)

) ( ) ( )

( (0) ) ( ( ) ) ( (0) (0)

) ( ) ( )

ˆ ˆ(e y e y )

ˆ(t) e ( )

a y a y e y e

y t e t

b y b y d y d

y t d t

c y c y y c y y c y

t

c y c y y



 



 

 

 
 
 
        
 

 
 

      
 
  

    




 2 3

23 1 2 24 2 1 1 2 2

3

,
ˆ ˆ(d y d y )

ˆ(t) d ( )

c y y c y

t 

 
 
 
 

   
 
  

where 

1 2 1 2

0 0

2 1 2 1

0 0

3 4 3 4

5 6

7 8

1

( )

cos sin

cos sin sin cos

,
sin cos

( cos sin ) ( cos sin )

( )

cos sin sin cos

cos sin

cos sin

cos

L L L L

L L

L L L L

L L

L L L L

M M

L L

M

L L

M

N



 

     

   

       



   

 

 



 

 
 

 
 
 
 

 
  
 
 

 

 





5 6

7 8

2 1 2

sin cos

,

sin cos

sin sin cos

L L

M

L L

M

N N N

 

 

  

 
 
 

 
 
 

 
 
   

where the explicit expressions of )8,..,2,1( iLi  and N  

are also provided in[12], and 1N  and 2N can be obtained 

from the relation ,, I  expressed in terms of ,  

and the coefficients , , ,i i ia b d and ie in Eqs.(2.1). The 

lengthy expressions of iij ec ˆ, and id are omitted here. 

Therefore we obtain the equation (2.1) of the stochastic 

center manifold: 
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    We set the coordinate transformation 1 2cos ,y r y    

sin ,r  and by substituting the variable in (2.7), we obtain 
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    It is difficult to calculate the exact solution for system (2.8) 

today. According to the Khasminskii limit theorem, when the 

intensities of the white noises )3,2,1)(,( ide ii
 is small en- 

enough, the response process )}(),({ ttr  weakly converged 

to the two-dimensional Markov diffusion process [26-29]. 

Through the stochastic averaging method, stochastic 

differential equations (2.9) are obtained 
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where )(tWr and W are the independent and standard 

Wiener processes. As for the twodimensional diffusion 

process, it is necessary to calculate its two-dimensional 

transition probability density. There is no general and right 

method for the calculation. As for the concrete system, we 

could finish the calculation with some special techniques. 

Set the parameters as follows: 
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   2

7 11 21 13 22 8 21 14 23 12

,

3 3 , 3 3 .c c c c c c c c        

 

    Under the condition ,02

21

2

12  we rewrote system (2. 

9) as follows 

1

2

1

2
3 23 72 4

1 3

1

2
5

1

2
28 3 6

10 5 2

8 8 8

( ) ,

( )
8 8

.

r

r

dr r r dt r
r

dW r dW

d r dt r dW
r

dW





  
 



  
  


                   


 



               


                                                                       (2.10) 

From the diffusion matrix, we can find that the averages 

amplified )(tr is a one-dimensional Markov diffusion 

process when 
2 2

12 21 0,   1 2
ˆˆ. . 0,i e e d  or 1 2

ˆ ˆ 0d e   

.Thus we have the equation as following 

33 72
1

1

2
24

3

8 8

.
8

r

dr r r dt
r

r dW

 





  
     

  

 
  
 

                    (2.11)                                                            

    This is an efficient method to obtain the critical point of 

stochastic bifurcation through analyzing the change of 

stability of the averaging amplitude )(tr  in the meaning of 

probability. 

III. STOCHASTIC D-BIFURCATION 

    In the section, We will see how the introduction of 

randomness change the stochastic behavior significantly 

from both the dynamical and phenomenological points of 

view[26-29]. 

Theorem 3.1 (D-Bifurcation) When 3 70, 0.  
 

Then the delayed stochastic system (2.2) undergoes a 

D-bifurcation, at the parameter value 421 216   . 

But the stochastic system (2.2) does not undergo 

P-bifurcation. 

  Proof. When 3 70, 0.  
 

Then system (2.2) becomes 

1

2
22 4

1 .
8 8

rdr r dt r dW
 


    

      
         

(3.1) 

When 04  , equation (3.1) is a determinate system, and 

there is no bifurcation phenomenon.. Here we discuss the 

situation 04  , let  

    .
8

,
168

2

1

442
1 rrrrm 

























 
The continuous random dynamic system generated by (3.1) is

 
       

0 0

t t

rt x x m s x ds s x dW        . 

where rdW is the differential in the meaning of 

Stratanovich,  it is the unique strong solution of (3.1) with 

initial value x .  And   00,0  m , so 0 is a fixed point 
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of  . Since  rm
 

is bounded and for any 0r , it 

satisfies the ellipticity condition:   0r ; it is assured that 

there is at most one stationary probability density. According 

to the 


oIt equation of amplitude  tr , we obtain its FPK 

equation corresponding to (3.1) as follows 

.
88

24

2

2

2
1

























































pr

r
pr

rt

p 


 

                                  

(3.2) 

Let 0




t

p
, then we obtain the solution of system (3.2) 

 
 

 
1

2

0

2
( ) exp .

t m
p t c t d


 

 


 

   
 


          

(3.3) 

The above dynamical system (3.2) has two kinds of 

equilibrium state: fixed point and nonstationary Motion. The 

invariant measure of the former is
0 and it’s probability 

density is x . The invariant measure of the latter is   and 

it’s probability density is (3.3). In the following, we calculate 

the lyapunov exponent of the two invariant measures. 

    Using the solution of linear 


oIt stochastic differential 

equation, we obtain the solution of system (3.1). 

   

 
   

 
0 0

0

0 0
exp 0 0 .

2

t t

r

r t r

m ds dW
 





  
     

  
 

                                  

(3.4) 

The Lyapunov exponent with regard to  of dynamic system 

 is defined as: 

   
1

lim ln ,
t

r t
t

 



                

(3.5) 

Substituting (3.4) into (3.5), note that     00,00   ,  

we obtain the Lyapunov exponent of the fixed point: 

 

       

0

0 0

1
lim ln 0 0 0

t t

r
t

r m ds dW s
t

 




 
    

 
 

   
 

0 0 lim
r

t

W t
m

t



  

 

 0m
 

.
168

42
1


 

                     

(3.6)

  

 

For the invariant measure which regard (3.4) as its density, 

we obtain the Lyapunov exponent: 

     
0

1
lim ( )

t

t
m r r r ds

t
   


      

     

 
'

' ( ) ( )
( )

2R

r r
m r p r dr

  
  

 
  

 

 
 

2

2
R

m r
p r dr

r

 
   

 
  

   







 rmrm

4

22

3

4

16
exp232




 
23

2 42
4 1

2 4
1

4

32 2
8 16

16
exp .

8 16

 
 

 




 
    

 

  
   

  

          

(3.7) 

Let 2 4
1

8 16

 
    . We can obtain that the invariant 

measure of the fixed point is stable when 0 , but the 

invariant measure of the non-stationary motion is stable when  

0,   so 0 D  is a point of D-bifurcation. 

Simplify Eq.(3.3), we can obtain 

 1 2 4

4

2 8

( )stp r cr

  



 

 ,                                               (3.8) 

 where c is a normalization constant, thus we have 

    0,v

stp r o r r                                                 (3.9) 

             

where 
 1 2 4

4

2 8
v

  



 
 . Obviously when 1v , 

that is 0
168

42
1 


 ,  rpst

is a  function. when 

1 0v   , that is 0,0
168

42
1  r


 is a maximum 

point of  rpst  in the state space, thus the system undergoes 

D-bifurcation when 1v , that is 
2

1
8


   4 0

16


 , is 

the critical condition of D-bifurcation at the equilibrium point. 

When 0v , there is no point that makes  rpst have 

maximum value, thus the system does not undergo 

P-bifurcation. 

Theorem 3.2(Stochastic Pitchfork bifurcation) When 

0,0 73   . Then the system (2.2) undergoes stochastic 

pitchfork bifurcation. 

Proof. When 0,0 73    . then Eq(2.11) can rewrite 

as follows 

rdWrdtrrdr
2

1

24372
1

888





























 .(3.10)                                                                                

Let 0,
8

7

7 


 


 r ,then the system (3.10) becomes 

1

2
32 4

1
8 8

td dt dW
 

    
    

       
    

   (3.11) 

which has the solution 
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 

 

 

1

1

2
2 4

1

1

1 2

2
2 2 4

1

0

,

exp
8 8

1 2 exp 2
8 8

t

t

s

t

t W

t W ds

   

 
  

 
  

 

 
            
 

   
                   
   



 

                                                                                       (3.12) 

  We now determine the domain   ,
1

tD , where 

     
1

, : : , ,D t t D D X         

is the (in general possibly empty) set of initial values   

for which the trajectories still exist at time t  and the range 

  ,
1

tR of      
1 1 1

, : , , .t D t R t         

We have 

 
    1

1 1

, 0,
,

, , , , 0,

t
D t

d t d t t


 


 

 
 

 

    (3.13) 

where 

 

 

1

1

21

2
2 4

1

0

,

1

2 ex p 2 2
8 8

0 ,

t

s

d t

t W ds

 

 
 



  
                 





and 

    

    
1 1

1 1

, ,

, , , , 0,

, 0,

R t D t t

r t r t t

t

 

 

  

 

 

  
 

 
         

(3.14)

 

 

where 

    

 

 

1 1

1

2
2 4

1

1

21

2
2 4

1

0

, ,

exp
8 8

2 exp 2 2
8 8

0.

t

t

s

r t d t t

t W

t W ds

   

 
 

 
 

  

 
            
 

  
                   





 

We can now determine 

     ,:
11

tDE t 
 

and obtain 

 
    

 

1 1

1

2
1

2
1

, , , , 0,
8

0 , 0,
8

d t d t

E
 




  






 
  

 
  


 

where 

 

 

1

1

21

2
2 4

1

0

0 ,

1

2 exp 2
8 8

s

d t

t W ds

 

 
 





 

   
                     

 



 

The ergodic invariant measures of system (3.10) are
 

    (i) For 0
8

2
1 


  , the only invariant measures is 1

  

0 .  

    (ii) For 0
8

2
1 


 we have the three invariant forward 

Markov measures 0
1  

  and  


 


1

1

, k  , where 

 

 

1

1

1 2
0

2
2 4

1

:

2 exp 2 2 .
8 8

t

k

t W ds

 

 
 







  
               

  


 

  We have  
1

2 .Ek   Solving the forward Fokker 

Planck equation 

 

  

1 1

* 32 4
1

24
1

8 16

0
16

L p P

P

 



 
    


 


   

       
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
 

 

yields 

    (i) 01
 p for all

2
1 ,

8


   

    (ii) for 0
1
p

 

 

2
1

4

1
1

2( )
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4

exp , 0,

0, 0,

Nq










  










    
 



 

and    ,
11

    qq   where 
1

1

4

N





  
  

   
2

1
8

4
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8







 
 

  
 
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  Naturally the invariant measures  
1

1
, .

k



 
  

 are 

those corresponding to the stationary measures 1.q


Hence all 

invariant measures are Markov measures. 

  We determine all invariant measures(necessarily Dirac 

measure) of local RDS  generated by the SDE 

1

2
32 4

1 .
8 8

d dt dW
 

    
    

       
    



  

(3.16) 

on the state space  , 
8

2
1


  and 0

8

2

1

4 






 
.  We 

now calculate the Lyapunov exponent for each of these 

measure. 

    The linearized RDS  , ,t D t     satisfies the 

linearized SDE 

  
2

2
1

1

2
4

3 , ,
8

.
8

t t

t

d t dt

dW


    




  
     

  

 
  
 
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Hence 
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    

1
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1

0

, , exp
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Thus, if
 0

  
   is a  invariant measure, its 

Lyapunov exponent is 
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provided the IC  2 1

0 PL  is satisfied. 

(i) For 
8

2
1


 the IC for 1

, 0



   is trivially 

satisfied and we obtain 
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8

 
      
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1


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(ii) For 
1

1
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2
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8







 

 d
v  is

0

F measurable, 

hence the density 
1p


of 1 1

2p E
 
  satisfies the 

Fokker-Planck equation 
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which has the unique probability density solution 
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the IC is satisfied. The calculation of the Lyapunov exponent 

is accomplished by observing that 
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Hence by the ergodic thoerem 
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(iii) For
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  The two families of densities   0
1

1


q  clearly undergo 

a P-bifurcation at the parameter value 
8

4
1


 P Hence, we 
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have a D-bifurcation of the trivial reference measure 0  at  

0D and a P-bifurcation of 

2

2
1

8
.

2
P






 
 

   

IV. P-BIFURCATION 

 

    In the following, we consider the steady-state probability 

density  stp r  of the linear It o


 stochastic differential equ- 

ation. Calculating extreme values of the invariant measure is 

one of  the most popular efficient methods in studying the 

bifurcation of  a nonlinear dynamical system. The invariant 

measure is an important characteristic value of stochastic 

bifurcation. 

4.1 Case I: 3 70, 0  
 

    When 3 70, 0   . According to the It o


 equation of 

amplitude ( )r t , we obtain its FPK equation as follows 

32
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2
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32
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r p

t r r

r p
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    
    
    

                    (4.1)

 

with the initial value Condition  7 0 00, , | ,p r t r t   ,  

 0 0, ,r r t t   where  0 0, | ,p r t r t
 
is the transition 

probability density of diffusion process  r t . The invariant 

measure of   r t  is the steady-state probability density 

 stp r  which is the solution of the degenerate system as 

following 
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Through calculation, we can obtain 
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                                                                                     (4.3)  

where    
4

1 1

1 2
0

8 , .x tv x t e dt  


      
 

According to Namachivaya’s theory[27], the extreme 

value of an invariant measure contains the most important 

essence of the nonlinear stochastic system. In other words, 

the invariant measure can uncover the characteristic infor- 

mation of the steady state. When the intensity of noise tends 

to zero, the extreme values of  stp r  approximately show 

the behavior of the deterministic system. If  the process  r t  

is ergodic then  stp r  can be regarded as the time 

measurement for staying in the neighborhood of  a t  

according to Oseled- 

ec ergodic theorem. 

    From the analysis above, we know that the parameters 3  

> 0, 2  > 4  > 0.  If  stp r  has a maximum value at 
*r , 

the sample trajectory will stay for a longer time in the neighb- 

orhood of 
*r , i.e. 

*r  is stable in the meaning of probability 

(with a bigger probability). If  stp r  has a minimum value 

(zero), it is just the opposite.  

    We now calculate the most possible amplitude 
*r  of 

system (2.9)., i.e.  stp r  has a maximum value at 
*r . So 

we have 
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    Further, we have 
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Thus what we need is 
*r r  . In the meantime,  stp r  is 0 

(minimum) at 0,r  . This means that the system subjected 

to random excitations is almost unsteady at the equilibrium 

point ( 0)r   in the meaning of probability. The conclusion 

is to go all the way with what has been obtained by the 

singular boundary theory. The original nonlinear stochastic 

system has a stochastic Hopf  bifurcation at .r r   

2 2 3
1 2
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8
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8
x x i e r r
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  


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 
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We now choose some values of the parameters in the equa- 

tions, draw the graphics of  stp r . The curves in the graph 

belonging to the cond1,2,3,4 in turn are shown in Fig. 1a. It is 

worth putting forward that calculating the Hopf bifurcation 

with the parameters in the original system is necessary. If we 

now have values of the original parameters in system  (2.1), 
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that 1.5, 1, 0.8, 0.5625, 0.22,b r       
 

0.1,h   
1 1.3, 1.5, 0.1,A     01,B x   

1 20.1, 0.1, 0.1.   After further calculations we 

obtain 1  = −0.7625, 2  = 4.26167, 3  =0.324941, 4  

= 2.56999, 

1 2

4

8 1
0.715307

2

 





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2

2 2.71531

25.3905
( ) .

(2.59953 2.56999 )

r
p r

r



 

What is more is that r  = 0.767911 where  stp r  has the 

maximum value(see Fig.1b). 

 

4.2 Case II: 3 70, 0.  
 

 When 3 70, 0.    then Eq(2.9) can rewrite as follow- 

ing 
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 (4.4) 

    According to the It o


 equation of amplitude  r t , we 

obtain its FPK equation form (4.4) as following 
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                                                                                   (4.5)                                                              

with the initial value condition 7 0 00, ( , | , )p r t r t      

0 0( ), ,r r t t   where 0 0( , | , )p r t r t is the transition 

probability density of diffusion process ( ).r t The invariant 

measure of ( )r t  is the steady- state probability density 

 stp r which is the solution of the degenerate system as 

following 
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Through calculation, we can obtain 

.
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(4.7) 

According to Namachivaya’s theory[27], the extreme 

value of an invariant measure contains the most important 

essence of the nonlinear stochastic system. In other words, 

the invariant measure can uncover the characteristic infor- 

mation of the steady state. When the intension of the noise 

tends to zero, the extreme values of   stp r approximate to 

show the behavior of the deterministic system. If the process 

( )r t  is ergodic then  stp r  can be regarded as the time  

mea- surement for staying in the neighborhood of ( )a t  

according to Oseledec ergodic theorem. 

    From the analysis above, if  stp r  has a maximum value 

at r , the sample trajectory will stay for a longer time in the 

neighborhood of r , i.e. r  is stable in the meaning of prob- 

ability (with a bigger probability). If  stp r  has a minimum 

value (zero), it is just the opposite. 

    We now calculate the most possible amplitude r  of 

system (4.4)., i.e.  stp r  has a maximum value at r . So 

we have 
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and the solution 1 2 3
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
  . The probabilities and 

the positions of the Hopf bifurcation occurrence with differe- 

nt parameter are listed, and the corresponding results can be 

seen in Fig.2 as well. 

    Since 
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Thus what we need is .r r    The conclusion is to go 

all the way with what has been obtained by the singular boun- 
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dary theory. The original nonlinear stochastic system has a 

stochastic Hopf bifurcation at .r r   
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Fig.2. P-bifurcation of  p r
 at 
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  ，   

    We now choose some values of the parameters in the 

equations, draw the graphics of   stp r . It is worth putting 

forward that calculating the Hopf bifurcation with the para- 

meters in the original system is necessary. If we now have 

values of the original parameters in system (2.3), that 
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1 20.5, 0.3, 0.2.    After further calculations we 

obtain 1 2 3 40.2, 9.5907, 0, 5.1183,        . 

7 20.4732,    then 

    .28209.0
24rerp   

What is more is that r 0.28209 where ( )stp r  has the 

maximum value. 

4.3 Case III: 3 70, 0.    

    When 3 70, 0.    Similar above Case II discussions, 

Through calculation, we can obtain 
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3 71 2

2
4 4 4

88
2

2

3 48 r
  

   
   

                   (4.8) 

where c  is a normalization constant, according to Namachi- 

vaya’s theory, we calculate the most possible amplitude r


 

of system (2.9), we have 

2

1 2 4 1 2 4 3 7

7

8 (8 ) 32
.

2

r r

       



 

      



 

In the meantime, ( )stp r  is 0 (minimum) at 0.r  This 

means that the system subjected to random excitations is 

almost unsteady at the equilibrium point ( 0r  ) in the 

meaning of probability. The conclusion is to go all the way 

with what has been obtained by the singular boundary theory. 

The original nonlinear stochastic system has a stochastic 

Hopf bifurcation at r r  . 
2 2

1 2

2

1 2 4 1 2 4 3 7

7

8 (8 ) 32

2

( . . ).

x x

i e r r

       



 

      

 

 

    We now choose some values of the parameters in the 

equations, draw the graphics of ( )stp r . It is worth putting 

forward that calculating the Hopf bifurcation with the 

parameters in the original system is necessary. If we now 

have values of the original parameters in system (2.6), that 

11, 1.2, 1, 0.5, 0.18, hb r              

1 0 10.2, 1, 1.1, 0.2, 1, 0.5, 0.1,A B x          

2 0.3.   After further calculations we obtain 1 0.46    

25,
2 3 418.9095, 0.510106, 12.284     7,    

0.3,  
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20.227225 2

2 4.40395

155.736
( ) .

(2.68 0.990208 )

re x
p r

r






 

What is more is that 0.162777r   where  stp r  has the 

maximum value. 
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