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   Abstract – Solution of the field equations by including 

gravitational energy – momentum tensor in it (but without 

cosmological constant Λ) generates repulsive gravitational 

force. This repulsive force could be the source of the dark 

energy. Regularity condition of the related line element gives 

the limitations to the gravitational radius GM/2c2 ≤ r < ∞. This 

means that presented solution has no singularity points. 

Minimal diameter of the universe mass 2r = GM/c2 corresponds 

to the Planck’s length Lpl = GMpl /c
2, as the minimal diameter of 

the Planck’s mass Mpl.  From the universe velocity equation, we 

obtain the limitations to the energy conservation constant 0  κ 

≤ 1. This means that the kinetic energy is less or equal to the 

potential energy. For that case the spatial curvature of the space 

is  ≥ 0. In other words, our universe is a flat or a 

hyperspherical, because hyperbolic universe is excluded. 

Further, the zero points of the universe velocity equation 

determine the minimal gravitational radius at rmin = 

GM/(1+κ)c2 and maximal gravitational radius at rmax = 

GM/(1-κ)c2. Applying radial density ρr = M/r to the minimal 

and maximal gravitational radiuses we obtain the other 

limitations to the energy conservation constant 0  κ < 1 and to 

the spatial curvature of the space  > 0.  In that case our 

universe is a hyperspherical because flat and hyperbolic 

universes are excluded by the mentioned limitations.  

 
 Index Terms-  Universe expansion; Repulsive gravitational 

force; Dark energy; Minimal gravitational radius; Maximal 

gravitational radius 

I. INTRODUCTION 

   As it is well known today, the universe continues to expand, 

even at an accelerating rate. The main reason for it is an 

unknown energy called a dark energy. This energy occupies 

about 68 percent of the total energy in the universe. There 

exist more dynamic models of the universe motion. The most 

known is the model that has been developed independently by 

Alexander Friedmann 1,2, Georges Lemaitre 3,4, Howard 

Percy Robertson 5-7 and Arthur Geoffrey Walker 8. 

Therefore, it has been named Friedmann – Lemaitre – 

Robertson – Walker (FLRW) model. In the literature one can 

find also the names Friedmann – Robertson – Walker (FRW), 

or Robertson – Walker (RW), or Friedmann – Lemaitre (FL) 

model. In the modern cosmology it is also called Standard 

Model (ST) 9. The FLRW model describes a homogeneous, 

isotropic expanding or contracting universe. The general 

metric has been introduced on the assumption that the 

universe geometric properties are homogeneous and 

isotropic, i.e. the Cosmological Principle is valued. 

Empirically, this is justified on scales larger than 100 Mpc. 

They also used the Einstein field equations 10,11 for 

derivation of the “scale factor” of the universe as a function of 
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time. The FLRW model is well described in the references 

1-9, 12-18. 

   The history and present state of the universe motion models 

have been presented in 1-41.  The main problem of the all 

models of the universe motion is to answer (among the 

others) to the important questions of the cosmology 23: 

what occurred at the initial singularity?, how old is the 

universe?, how big is the universe? and what is its ultimate 

fate? Recently, a new method for testing of the Cosmological 

Principle by using an isotropic blackbody cosmic microwave 

background radiation, as evidence for a homogeneous 

universe, has been presented in 33. Today we know that the 

universe continues to expand, even at an accelerating rate. 

This acceleration is caused by an unknown energy called a 

dark energy. But we do not know the source of dark energy. 

One of the candidates for the source of dark energy is a 

cosmological constant Λ. 

   Here we derived a new model of the universe motion based 

on the solution of the field equations by including 

gravitational energy – momentum tensor in it, but without 

cosmological constant Λ. This solution showed that the 

gravitational energy – momentum tensor generates repulsive 

gravitational force. This force is repulsive in the region 

GM/2c2 ≤ r  GM/c2. At the radius r = GM/2c2 repulsive 

gravitational force is maximal and at the radius r = GM/c2 is 

equal to zero. Further, in the region GM/c2  r  ∞ the 

gravitational force is attractive as we know from the 

experience. At the radius r = GM/c2 gravitational force is 

changing from repulsive to the attractive one (in the 

expanding phase) and from attractive to repulsive force (in 

the contracting phase). Following the observations, we know 

that nowadays our universe is expanding in the acceleration 

rate. Thus, we can conclude that the present universe radius 

should be less than GM/c2. From the previous consideration 

we can see that the repulsive gravitational energy has the role 

of dark energy.  In that sense, one can conclude that the 

repulsive gravitational force could be the source of the dark 

energy. Thus, the gravitational energy - momentum tensor has 

an effect as feedback in order to control of the universe 

motion. 

   Further, the regularity condition of the related line element 

gives the limitations to the energy conservation constant 0  κ 

≤ 1. This means that the kinetic energy is less or equal to the 

potential energy. For that case the spatial curvature of the 

space  ≥ 0. In other words, our universe is a flat or a 

hyperspherical, because hyperbolic universe is excluded. The 

zero points of the universe velocity equation determine the 

minimal gravitational radius at rmin = GM/(1+κ)c2 and 

maximal gravitational radius at rmax = GM/(1-κ)c2. Applying 

radial density ρr = M/r to the minimal and maximal 

gravitational radiuses we obtain the other limitations to the 
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energy conservation constant 0  κ < 1 and to the spatial 

curvature of the space  > 0.  In this case our universe is a 

hyperspherical because flat and hyperbolic universes are 

excluded by the limitations of the energy conservation 

constant.  

   The important consequence of the solution of the field 

equations by including gravitational energy - momentum 

tensor in it is the existence of the minimal gravitational radius 

at r = GM/2c2. This is very important information, because it 

tells us that the gravitational field has no singularity point. 

Meanwhile, the presented dynamic model of the universe 

motion describes the motion after universe creation by Big 

Bang, from the moment when gravitational repulsive force 

became dominant in a space – time.  

For derivation of the equations of the universe motion we 

used the related Lagrangean based on the solution of the line 

element in a gravitational field. In order to compare this 

solution of the universe motion with one of the existing 

solutions, here we started with the Friedmman’s model of the 

universe motion. 

II. FRIEDMAN EQUATIONS 

   Following the assumption that the universe geometric 

properties are homogeneous and isotropic, i.e. the 

Cosmological Principle is valid, Friedman has been derived 

his equations 1,2: 
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Here ( t )α is the scale factor with related time derivations α  

and α ,   is spatial curvature parameter, Λ is cosmological 

constant, while   and p  are fluid mass density and 

pressure, respectively. The presented equations (1) are the 

basis of the standard big bang cosmological model including 

the current ΛCDM model. Following the mentioned 

assumption that the universe is isotropic and homogenous, 

the model (1) can be used as a first approximation for the 

evolution of the real, lumpy universe, because it is simple for 

calculation. Further more, the models which calculate the 

lumpiness in the universe can be added to this model as 

extensions.  

   The second equation in (1) states that both the energy 

density and the pressure cause the expansion rate of the 

universe, α , to decrease. It means that both the energy density 

and the pressure cause a deceleration in the expansion of the 

universe. This is the consequence of gravitation, including 

that pressure is playing a similar role to that of energy (or 

mass) density. This is, of course, in accordance with the 

principles of general relativity. On the other side, the 

cosmological constant, Λ, causes acceleration in the 

expansion of the universe. 

   Friedmann also used the full form of the Einstein’s field 

equations in the General Theory of Relativity that is given by 

the relation 10,11 
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In this relation Rμη is Ricci tensor, gμη is metric tensor, R is 

Ricci scalar, Λ is the Einstein’s cosmological constant, G is 

the Newton’s gravitational constant, c is the speed of the light 

in a vacuum and Tη is the energy-momentum tensor. 

Determination of the time evolution of the scale factor ( t )α  

requires the Einstein’s field equations together with a way of 

calculation of density, ( t ) , such as a cosmological equation 

of state. If the energy-momentum tensor, T , is similarly 

assumed to be isotropic and homogenous, then we have an 

analytic solution to Einstein’s field equations (2), giving the 

Friedman equations in the form (1). 

III. UNIVERSE MOTION EQUATIONS BASED ON 

GRAVITATIONAL ENERGY MOMENTUM TENSOR 

   Here we show new approach to the description of the 

universe motion. This approach is based on the solution of the 

field equations (2) with inclusion of the gravitational energy – 

momentum tensor T, but without cosmological constant Λ. 

On that way we obtain the solution of the field parameters in a 

gravitational field. Further, for derivation of the equations of 

the universe motion we used the related LaGrangean based on 

the solution of the line element in a gravitational field. 

   The general nondiagonal form of the line element, ds2, in 

the spherical polar coordinates, can be described by the 

equation 

  
2 2 2 2 2 2 2 2 22ds c dt cdt dr dr r d r sin d .              

                                                                                          (3)                                              

Here ν and λ are field parameters, c is the speed of the light in 

a vacuum, r is a radius vector, θ is an angle between radius 

vector r and z-axis, and  is an angle between projection of a 

radius vector r on (x-y) plane and x-axis. Applying field 

equations  
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 we obtain the solutions of the field parameters ν and λ: 
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Here GM/c2 is the Newton’s constant of integration, G is a 

gravitational constant, M is a total gravitational mass, r is a 

gravitational radius and c is the speed of the light in a 

vacuum. If displacement four-vector dX is defined in frame K 

by the expression 

    0 1 2 3idX K cdt,dr,d ,d dx , i , , , ,         (6)  

then the related covariant metric tensor of the line element (3) 

has the following matrix presentation 
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Here the non-null components of the metric tensor gμ  are 

given by the relations: 
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The related determinant of the metric tensor (7) has the form: 
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In the previous relation we use the normalization for r = 1, 

and  =  / 2. On that way, the well-known condition for the 

metric tensor of the line element, det (gμη) = -1, is satisfied. 

As the result we obtain the simple relation between field 

parameters ν and λ. 

   By including metric parameters (8) and (9) into the field 

equations (4), we obtain the related gravitational 

energy-momentum tensor (EMT) 
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It is easy to prove that this EMT satisfies the required 

properties: 1) symmetry, T T  ; 2) non-negative energy 

density for static and free field, 00 0T  ; and 3) zero trace, 

T=0.
 
 

   Proposition 1. If the line element is defined by the relations 

(3) to (9), then the dynamic model of the universe motion, for 

T ≠ 0 and Λ =0, is given by the equations: 
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Comparing the first equation in (11) with the first Friedman 

equation in (1), we can conclude that both equations have the 

same form of the two parts of the left side and the first part of 

the right side if the substitutions r = α  and r = α  are valid. 

Comparing the second equation in (11) with the second 

Friedman equation in (1), we can conclude that both 

equations have the same form of the left side and of the first 

part of the right side if the substitutions r =α  and r= α  are 

valid. Thus, if the equations (11) describe the universe 

motion, then the radial coordinate r (t) has the roll of the 

scale factor α (t). The first part on the right side of the second 

equation in (11) states that both the energy density and the 

pressure cause a deceleration in the expansion of the 

universe. This is the consequence of gravitation, including 

that pressure is playing a similar role to that of energy (or 

mass) density. This is, of course, in accordance with the 

principles of general relativity. On the other hand, the second 

part of the right side of the second equation in (11) causes 

acceleration in the expansion of the universe. This is the 

consequence of the inclusion of the gravitational energy – 

momentum tensor on the right side of the field equations that 

generates the repulsive gravitation force in a gravitational 

field. This fact tells us that the repulsive gravitational force 

could be the source of the dark energy. Of course, this should 

be confirmed by the related experiments. 

   Proof of the Proposition 1. In order to prove of the 

proposition 1, for the case (T ≠ 0 and Λ = 0), one can start 

with the Lagrangean of the line element (3) 
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Here d is the differential of the proper time  and dxμ, and 

dxη, are components of the contravariant displacement 

four-vector dX in (6). Applying the field parameters (8) and 

using (12) one obtains the Lagrangean in the following form 
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                                                                                         (13) 

The related Euler – Lagrange equations are given by the 

expressions: 
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   Applying i = 0 to the relation (14) one obtains energy 

conservation equation: 
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Here parameter κ is the energy conservation constant. 

Applying i = 3 to the relation (14) one obtains angular 

momentum conservation equation: 
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Parameter h is the angular momentum conservation constant. 

In the case  =  / 2 (as in Newtonian theory) the angular 

momentum conservation equation (16) is transformed into 

the well-known relation:  
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Now, substituting the relations derived from (15) and (9), 

respectively:  
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into the equation (13), and employing   = L (where  = 1 for 

a time-like geodesics and  = 0 for a null geodesics) one 

obtains the following relation 
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This relation represents the generalized energy equation of a 

particle with unit mass, where the sum of the kinetic energy 

Ek and potential energy Ep is equal to constant: 
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   For the case (T ≠ 0 and Λ =0), the relation (19) is 

transformed into the new form of the generalized energy 

equation 
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                                                                                         (21) 

This relation also represents that the sum of the kinetic energy 

Ek and potential energy Ep of a particle with unit mass is equal 

to constant 
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   Now, one can assume that the motion is in the radial 

direction, only. This means that  = 0 and  = 0. For that 

case, the generalized energy equation (19) is transformed into 

the relation 
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In the case (T ≠ 0 and Λ=0), the relation (23) is given by the 

equation  
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Now one can apply a mass density ρ, spatial curvature 

constant , and  = 1 (for time-like geodesics):  
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By including the substitutions from (25), the equation (24) is 

transformed into the relation 

                

2 2 2

2 2

8 2
1

3 3

r c G G r
.

r r c

    
          

 
      (26) 

Comparing this equation with the first Friedman equation in 

(1), we can conclude that both equations have the same form 

of the two parts of the left side and the first part of the right 

side if the substitutions r =α  and r = α  are valid. Thus, if 

the equation (26) describes the universe motion, then the 

radial coordinate r (t) has the roll of the scale factor α (t). 

   Applying a time derivative to (26) one obtains the following 

acceleration equation 

                 

2

2

4 4
2 1

3 3

r G r G r
.

r r c

    
         





      (27) 

In order to calculate a time derivative of the mass density , 

one should assume that the expansion of the universe is an 

adiabatic process. In that case, the thermo-dynamical 

approach can be considered.  This is equivalent to the first 

law of thermodynamics and is resulting with the relations: 

                

2

2

3

3

p
,

c

p
.

c

 
        

 

 
     

 


 




α
α r, α r,

α

r

r

        (28) 
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Including the second equation from (28) into (27) one obtains 

the following relation 

                 

2

2 2

4 3 4
1

3 3

G p G r
.

c c

    
        

r

r
       (29) 

Comparing this equation with the second Friedman equation 

in (1), we can conclude that both equations have the same 

form of the left side and on the first part of the right side if the 

substitutions r = α  and r = α  are valid. Thus, if the 

equation (29) describes the universe motion, then the radial 

coordinate r (t) has the roll of the scale factor α (t). The 

equation (29) states that the first part of the right side causes a 

deceleration in the expansion of the universe. On the other 

hand, the second part of the right-side gives the conditions for 

the universe expansion, contraction and null acceleration: 

                    

2

2

2

2

2

2

3
>

4

3
<

4

3

4

c
exp ansion,

Gr

c
contraction,

Gr

c
null acceleration.

Gr

 


 


  


         (29a) 

At the point of null acceleration, we have change from the 

expansion to the contraction and vice versa. 

   From the previous consideration one can take the equations 

(26) and (29) and put them together: 

               

2 2 2

2 2

2

2 2

8 2
1

3 3

4 3 4
1

3 3

r c G G r
,

r r c

G p G r
.

c c

    
          

    
         



r

r



       (30) 

The first relation in (30) is the velocity equation, while the 

second one is the acceleration equation. The both equations 

are valid for the case (T ≠ 0 and Λ=0). Thus, the Proposition 

1, related to the case where repulsive gravitational force plays 

the role of the dark energy, is finished by the relations (30). 

This fact tells us that the repulsive gravitational force could 

be the source of the dark energy. Of course, this should be 

confirmed by the related experiments. 

IV. CONSEQUENCES OF THE UNIVERSE MOTION MODEL  

A.  Regularity of the metrics of the line element  

   The line element (3) with parameters (5) can be rewritten 

into the following form 

  

2

2 2 2

2 2 2

2 2 2 2 2 2

2
1 2 1

2

GM GM GM
ds c dt cdt dr

r c r c r c

dr r d r sin d .  

   
          

   

  

    

                                                                                         (31) 

It is easy to prove that the line element (31) is regular if the 

following conditions are satisfied: 

      
2 2 2

1 0 1
2 2 2

GM GM GM
r

r c r c c

 
        

 

 (32) 

Thus, the region of the regularity of the line element (31) is 

determined by the last relation in (32). Further, from the 

previous relations we can conclude that there exists a 

minimal gravitational radius minr which still preserves 

regularity of the line element (31) 

                                      
22

min

GM
r .

c
                              (33) 

Including of the minimal gravitational radius (33) into the 

line element (31) we obtain regular line element in the form 

       

2 2 2 2 2 2 2 2 2ds c dt dr r d r sin d .         (34) 

For the radiuses less than minimal gravitational 

radius minr the line element (31) becomes imaginary item. 

Gravitational radius can be equal to zero only if the mass is 

equal to zero. This means that any mass m ≠ 0 can not reach 

the singularity at r = 0 in a gravitational field. In that sense, 

dynamic model of the universe motion (11,30) describes the 

motion after universe creation by Big Bang, at the moment 

when gravitational repulsive force became dominant in a 

space – time. The minimal gravitational radius is four time 

less than Schwarzschild radius 

                         
2 2

2
4 4

2
s min

GM GM
r r .

c c
                 (35) 

B. The physical meaning of the minimal gravitational 

radius 

   In order to highlight the physical meaning of the minimal 

gravitational radius rmin, one can apply of the Planck’s mass 

Mp to the relation (33)  

                                    
22

p
p min

GM
r .

c


                         

(36) 

Here rpmin is a minimal radius of the Planck’ mass Mp. As it is 

well-known, the Planck’s length Lp 42-44 and the Planck’s 

mass Mp 45 are defined from three fundamental physical 

constants: the speed of light in vacuum c, the reduced 

Planck’s constant ћ and the gravitational constant G: 

                         
p p

c G
M , L .

G
 

3

ћ ћ

c   

           (37) 

Assuming that the Planck’s mass Mp is spherically symmetric 

body (i.e. Lp is diameter of the Planck’s mass) and following 

the relations (36) and (37), we can calculate the following 

equality: 

      

2 2

32

2
2

p p

p min p

p
p min p p min

M Mc c / G c
, const.

r G L GG / c

L
r L r .

   

   

ћ

ћ

  

(38) 

From the last relation in (38), one can conclude that the 

minimal gravitational radius of the Planck’s mass Mp , 

denoted by rpmin, is equal to the half of the Planck’s length Lp. 
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Thus, the physical meaning of the Planck’s length could be: 

Lp is the gravitational minimal diameter (length) of the 

Planck’s mass Mp. On the other words, Planck’s Mass Mp can 

not have a gravitational diameter less than Planck’s length Lp. 

Furthermore, from the relation (33) we can see that the 

minimal radius is proportional to the gravitational mass. 

Thus, the smallest minimal radius belongs to the smallest 

mass in space – time. Since the Planck’s mass is not the 

smallest mass in space – time, the Planks length is not the 

smallest length in that sense.  

   From the relation (33) one can derive maximal radial 

density in gravitational field
maxr :   

                  

2

2

2

2

min min

max
min min

p
r

p

M M c
const.

r L G

MM c
const.

r r G

   

    
           (39) 

Thus, the minimal gravitational radius of mass M corresponds 

to the minimal gravitational radius rpmin of the Planck’s mass 

Mp. On the same way, the minimal gravitational length Lmin is 

the minimal diameter of the mass M. From relations (39) we 

can see that the maximal radial density ρrmax is at the minimal 

gravitational radius and is the constant and the same for all 

masses including Planck’s mass. 

C. Universe velocity and acceleration at the characteristic 

radiuses 

   The relation (24) represents that the sum of the kinetic 

energy Ek and potential energy Ep of a particle with unit mass 

is equal to constant:  

   

 

2
2 2 2

2 2

2
2 2

1 1 2

2 2

2

k p

k p

GM GM
E r , E c ,

rc rc

c
E E co n s t.



 

               

   



(40)      

Following (40) and putting that  = 1 (for time-like 

geodesics), one obtains the following relations between 

kinetic and potential energies and the energy conservation 

constant : 

   
 

2
2 1 1

2

1 0 1

k p k p

k p k p

c
E E , E E ,

E E , E E .

 

 

      

           

 (41) 

Following the relations (24) and (40) and assuming that the 

universe motion follows time-like geodesic ( = 1), one can 

derive radial velocity r and radial acceleration r of the 

universe motion:  

           

 
1 2

2 2

2

2 2

2
1 1

2

1

/
GM GM

r c ,
r rc

GM GM
r .

r r c


  

      
  

 
    

 





    (42) 

The sign (+) in the velocity equation is valid for an expanding 

phase, while the sign (-) is related to the contracting one. The 

acceleration equation tells us that the universe acceleration 

becomes repulsive if (GM/rc2)  1. One of the conclusions 

could be that the repulsive gravitational force is the source of 

dark energy. For the case (GM/rc2) =1 the acceleration is 

equal to zero and for (GM/rc2)  1 the acceleration is 

attractive. At the point (GM/rc2) =1, the repulsive 

acceleration is changing into the attractive one (for expansion 

phase) and vice versa (for contraction phase).  

   The velocity equation in (42) has two zeros at the positions 

r1 and r2: 

       

                 1 22 21 1

GM GM
r , r .

( )c ( )c
 

  
           (43)                  

From the relations (24) and (43) one can see that the 

hyperspherical scenario of the universe motion can be 

realized only for the case where the energy conservation 

constant is satisfying the condition (0    1). This means 

that potential energy is greater than kinetic energy. For that 

case the velocity equation in (42) has two finite zeros: initial 

one for r = r1, and final one for r = r2.  

   On the other side the hyperbolic scenario of the universe 

motion can be realized only for the case where the energy 

conservation constant is greater than one (  1). This 

means that kinetic energy is greater than potential energy. For 

that case the velocity relation (42) has only one real zero r1 in 

(43), because the other one gives a negative r2. The real zero 

r1 is the initial one for this scenario of the universe motion. 

   Finally, the flat universe can be realized only for the case 

where the energy conservation constant is equal to one (  

=1). This means that kinetic energy is equal to potential 

energy. For that case the velocity equation in (42) has one 

finite initial zero for r = r1, and one infinite final zero for r2 → 

∞. The initial radius r1 of the hyperbolic universe (  1) is 

less than the initial radius of the flat universe ( = 1) and also 

less than initial radius of the hyperspherical universe (  1). 

   The maximal radial velocity maxr can be obtained from 

(42) by applying condition that the radial universe 

acceleration is equal to zero: 

          
2

0 c max

GM
r r r , r c .

c
         (44) 

Thus, including the values of the energy conservation 

constant into (44) we obtain the following relation: 

           max hyperbolic max flat max hyperspherical .r r r         (45) 

Now, including r1 and r2 from (43) into the accelerating 

equation of the universe motion (42), we obtain the related 

accelerations at the radiuses r1 and r2: 

             

 

 

2 4

1 2 2
1 1

2 4

2 2 2
2 2

1
1

1
1

cGM GM
r ,

GMr r c

cGM GM
r .

GMr r c

 

 

  
     

 

   
     

 





 (46)  

The first relation in (46) gives the repulsive initial 

acceleration 1r  at the radius r1 for all scenarios of the universe 
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motion. On the other side the acceleration 2r at radius r2 of 

the universe motion is attractive for hyperspherical and 

hyperbolic scenarios of the universe motion, but for flat 

scenario (  = 1) radius r2 is going to infinity and the 

acceleration is going to zero. 

   From the relations (25) and (43) we can derive the relation 

between parameters κ and : 

   

 2 2

2

2

1 1 0

1

1

, Flat universe,

Hyperspherical universe,

Hyperbolic universe.

       

     

     

 





 (47) 

Here κ is the energy conservation constant derived from the 

Lagrangean (15) and   is spatial curvature parameter from 

the Friedmann equations (1).  

D. Limitations of the energy conservation 

constant κ. 

   For determination of the scenario of the universe motion 

given by (47), we have to know the limitations of the energy 

conservation constant κ. In that sense, one can start with the 

determination of the radial density ρr at the minimal and 

maximal universe radiuses: 

              

 
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 

 
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1
ρ ρ ,

1
ρ

ρ ρ ρ1
<1

ρ 1 ρ + ρ

max

min

max max min

min max min

r r
min

r
max

r r r

r r r

cM M
,

r r G

cM
,

r G

.

 
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 
 

 
   

 

      (48) 

From the previous relations we can see the limitations of the 

energy conservation constant 0  κ < 1 and the limitation of 

the spatial curvature of the space  > 0.  For that case our 

universe is a hyperspherical because flat and hyperbolic 

universes are excluded by limitations of parameters κ and  . 

V. CONCLUSION  

   New dynamic model of the universe motion, based on the 

existence of the gravitational energy – momentum tensor (but 

without cosmological constant Λ), is presented. As the 

consequence we obtain the repulsive gravitational force. This 

repulsive gravitational force could be the source of the dark 

energy instead of the cosmological constant Λ. In that sense a 

dark energy could be seen as a repulsive gravitational energy. 

The regularity condition of the related line element shows 

that presented solution has no singularity points. From the 

universe velocity equation and radial density, ρr = M/r, at the 

minimal and maximal gravitational radiuses, we obtain the 

limitations to the energy conservation constant 0  κ < 1 and 

to the spatial curvature of the space  > 0.  In that case our 

universe is a hyperspherical because flat and hyperbolic 

universes are excluded by limitations of parameters κ and  . 

Meanwhile, the presented dynamic model of the universe 

motion describes the motion after universe creation by Big 

Bang, at the moment when gravitational repulsive force 

became dominant in a space – time.  
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