

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-4, Issue-11, November 2018 Pages 16-18

 16 www.ijntr.org

Abstract — Extended Latency Time (ELT) algorithm is an

extension of the Latency time (LT) algorithm. Unlike LT, its

extended version allows a system to assign tasks containing

arbitrary time into the different processors. In doing so each

task is assigned a time frame which decreases as each time unit

passes. This report provides detailed information on the

performance of ELT on different Linux based operating

systems. The algorithm was implemented and the runtime was

measured by providing graphs as input, in three different

operation systems of Linux which are Ubuntu, Mint and Kali

where average execution time in Kali Linux has been the highest

which is close to 2.284 time units. From the three Ubuntu

showed the most promising result which has shown an execution

time of 2.198 time units. After some close observation it was

found that the algorithm showed the best performance in

Ubuntu.

Index Terms— Extended Latency Time, Scheduling

Algorithms, Algorithm Optimization

I. INTRODUCTION

 Shared memory is a way of making intercommunication

between processes faster. Instead of communicating through

the kernel the process share information in a shared space

which is easily accessible by them [10]. As a result the

computation time decreases. On the other hand, in a

Distributed Shared Memory (DSM) there are multiple

process with their own memory spaces. The processors are

linked by an interconnecting network. If for any reasons one

processor needs to access the other, requests (read/write) is

made using the network which is similar to a data bus and

responses are also given at the same way. DSM has the

advantages of a decreased cost compared to other

multiprocessor systems, provides a large virtual space, and it

has better portability due to common programming interfaces

[1]. Scheduling by means of which multiple processes are

given access to memory for execution is very important.

However it is very difficult to provide a proper allocation of

the computer resources by scheduling [2].Over the past years

there have been researches to solve this problem. Different

Dipta Gomes, Department of Computer Science, American International

University-Bangladesh (AIUB), Dhaka, Bangladesh

Aneem Al Ahsan Rupai,, Department of Computer Science, American

International University-Bangladesh (AIUB), Dhaka, Bangladesh

Abu Sufian,, Department of Computer Science, American International

University-Bangladesh (AIUB), Dhaka, Bangladesh

Mimun Barid, Department of Computer Science, American International

University-Bangladesh (AIUB), Dhaka, Bangladesh

types of scheduling algorithms have been proposed [9] [8].

One of them is ELT algorithm proposed in [3]. The main

emphasis of the algorithm was to extend the latency time

algorithm proposed in [4]. According to this algorithm any

process will be broken down in smaller parts associating each

with a time frame that can be updated. The synchronization

time of the processes were also taken into account. However

the ELT algorithm was not validated for optimization at

different operating systems.

In designing a distributed system, a better choice for the

intercommunication between the processes must be made.

Shared memory can be thought of as a candidate for this

matter as it provides a better understanding of the

implementation procedure to the programmers. Michael

Stumm and Sognian Zhon showed with implemented

verifications that distributed shared memory has a

competitive performance compared to data passing models

which in some cases even out run the later one [5]. However

scheduling different processes to run in such an environment

is difficult. Martin‚ and Sanja proposed a framework that

allows a decision maker to successively change the

definitions of optimality criteria [6]. There have been huge

amount of works done in order to address a scheduling

algorithm that utilizes the computer resources properly. One

such proposed algorithm is ELT and implemented by Irene

Zuccar at. el and was verified to give a promising

performance using DAG [3]. The algorithm was verified

using heuristics, it was not implemented to demonstrate a

practical performance.

There are different kinds of scheduling algorithm which

operates in a similar way to ELT. One of them is „List‟ that

prioritize tasks, makes a list of the task and then assign them

to available processors. Another one in Insertion Scheduling

Heuristic that works like a list algorithm, but at first looks for

empty time slots at the processor, and assigns tasks only if an

empty slot is found [7]. The ELT algorithm on the other hand

has the capability of assigning tasks whenever a processor is

sitting idle regardless of whatever task is assigned to it [3]. As

a result the computation speed increases.

This paper will provide information on the run time of the

ELT algorithm on different operating systems. The algorithm

will be implemented using C++ programming language. The

reason for choosing C++ because it has a faster performance

as the codes are typed checked before execution. In addition,

it is a lower- level language, which enables the machine to

convert the codes to machine language easily. Linux based

Performance Evaluation of Extended Latency

Time Algorithm in different Linux based

Operating Systems

Dipta Gomes, Aneem Al Ahsan Rupai, Mimun Barid, Abu Sufian

Performance Evaluation of Extended Latency Time Algorithm in different Linux based Operating Systems

 17 www.ijntr.org

operating systems have been chosen as the test environments

for validation as these are open source and the algorithm can

be easily incorporated to allow scheduling as the ELT

describes. Operating systems like Windows or Mac does not

allow this and hence testing the performance on those

environments will be complex.

II. METHODOLOGY

ELT algorithm was implemented and the execution time in

different operating system was compared. ELT is the

extended version of LT algorithm and has been proposed for

use in task with arbitrary time period. Figure-1 shows the

steps to test the algorithm in details.

Figure 1: Flow chart for ELT

At first the algorithm was broken into several modules for

ease of implementation. Then the requirements for each

module were analyzed and the dependent and the independent

modules were identified. The modules were set to be

implemented first sequentially. After completion of each

module, testing was done. All the modules were merged

together after the implementations were completed. Then

6db6b6were used to test the performance of the entire

algorithm. The performance was tested in two different

operation environments which are Ubuntu and Kali Linux

and a comparison between the execution time at different

operating system was made

The implementation of the algorithm required the header

files limit.h, map, vector, list, ctime, queue and time. For

representation of DAG, a self-implemented algorithm is

being used. Each vertex and edge was represented using a

structure and a class for the graph. For representation of the

vertices, each vertex was represented and traversed using

map where the edge name was mapped with the vertex object.

During prioritization, c++ stl function of priority queue and

queue was used to track enabled nodes and scheduled task

nodes.

The graph class contained method addEdge that added

edges to the graph containing parameters source node name,

destination node name and cost. The method printPath

printed the path traversed containing only the destination

node name. The function dag verified whether the function is

Directed Acyclic graph or not. Here the function

getcostToEndfor a specific vertex with name startname

calculated the total cost from the vertices to the leaf nodes.

getcostToIncalculates the total cost from the starting node to

the specific node. A Function get_Priority calculated the

priority of a specific node and the method

get_Piority_Of_All_Nodes of all vertices. Finally the

function ELT_Algorithm calculated and evaluated all the

nodes based on their priorities.

Priority function: In the method, the parameter that it takes

as input was Double system time, a variable that represented

system time in time units. This was the input parameter in the

algorithm that distinguished different classes of DAGs. A

priority queue pqueue is maintained that kept the most

prioritized task vertex at the top and sorted other vertices

accordingly. Variables such as, ln, Ln, Li, Out, Hang and T

was calculated from the graph vertices values. The final

priority was then calculated using :

Li = ln+ Ln

P = Σ (Li + Out+ Hang + T)

In the ELT algorithm function first the priority of the nodes

was calculated and the time „t‟ was taken as double t_units=0

. Then the time window of vertex was assigned equal to the

size of the task. All the nodes in the graph was then inserted to

a vector Unsched for indicating unscheduled. All the nodes

with t_level =1* was then enabled and insered into another

vector Enabled. After each time window the unit of the task is

processed and each task was ended when its time_window<0

and was enabled. Hence all the tasks were ended within an

extended latency as long as their time_window is <0.

III. RESULTS AND DISCUSSION

The ELT algorithm was implemented across three different

Linux platforms where the Prioritization function was

implemented using the basis of the summation of longest

path, critical path, longest path through the nodes, number of

tasks achievable by the nodes and duration of each node. Here

the Critical Path distance was added with the subscript of the

subsets (I, OUT, HANGs, Ts) to which each task belonged.

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-4, Issue-11, November 2018 Pages 16-18

 18 www.ijntr.org

Through implementation of the algorithm across various

devices the total execution time of the algorithm was

recorded. The set of tests used consisted of 100 DAGs which

were divided into five categories: 20 of which had tasks with

random duration (CR), 20 had tasks with duration between 1

and 2 time units (CR1-2), and 20 had tasks with duration

between 1 and 5 time units (CR1-5); and 20 DAGs of "known

structure" 23 had tasks with arbitrary duration (CC) and 23

had the same structure of the previous ones, but the tasks had

durations between 1 and 2 time units (CC1-2). The average of

the execution time of the algorithm is calculated and

recorded. It was found that Kali Linux took the longest time

for execution of the algorithm and Ubuntu the least time.

Table 1 – Runtime results of ELT in different Linux based

operating system

Fig 5- ELT Algorithm implemented across various Platforms

Figure 5 contains a bar graph containing the run-time of

various operating systems running ELT Algorithm Include a

note with your final paper indicating that you request color

printing. According to the first chart, for Kali Linux an

average count of run time for various classification of DAG

were run and respective time was being calculated. The other

bar graph contains the bar chart of other two operating

systems for Linux Mint and Ubuntu. . Here the execution

time was given in unit times.

Fig 6- Average Execution time of ELT

The figure 6, average execution time of the algorithm was

calculated. Here from the figure we can see, Kali Linux

having the highest execution time as a result is the least

favorable platform for running the ELT algorithm. Then the

least one is found to be Ubuntu which required the least

execution time in time units. This is because Ubuntu provides

the best support for development and allows best support for

the compiler used. On the other hand, Ubuntu provides the

fastest execution of the executable as the time required

mapping the memory into multiple files is faster than Kali

and Linux Mint where both are heavier compared to Ubuntu

which is the most lightweight among these three.

CONCLUSION

This research provides information on the run time of the

ELT algorithm on different Linux based OS. The algorithm

was implemented using C++ and then it had been run on Kali

Linux, Linux Mint and Ubuntu. The algorithm was

implemented on each of the operating systems, where it was

found the runtime of Linux mint was 2.284, kali Linux was

2.232 and Ubuntu was 2.198-unit times. From the above, we

can conclude Ubuntu as the most efficient Linux platform for

the implementation of the algorithm. However, the current

algorithm is optimized for use in tasks that involves graph. It

will be very useful if it can be applied on all kinds of tasks of

a computing system which can be done in future.

ACKNOWLEDGMENT

We would like to thank deeply to Mr. Mohammad

Marufuzzaman, Post-Doctoral Researcher, The National

Energy University, Malaysia for his utmost support and

guidance throughout this research.

REFERENCES

[1] https://en.wikipedia.org/wiki/Distributed_shared_memory

[2] EsmaInsafDjebbar and GhalemBelalem, “Tasks Scheduling and

Resource Allocation for High Data Management in Scientific Cloud

Computing Environment”, Springer International Publishing AG 2016

S. Boumerdassi et al. (Eds.): MSPN 2016, LNCS 10026, pp. 16–27,

2016. DOI: 10.1007/978-3-319-50463-6_2

[3] uccar, I , Solar, M., Kri, K, Parada, V, 2006, in IFIP International

Federation for Information Processing, Volume 218, “Professional

Practice in Artificial Intelligence”, eds. J. Debenham, (Boston:

Springer), pp. 313-321.

[4] M. Solar and M. Feeley, “A Scheduling Algorithm considering Latency

Time on a shared Memory Machine”, 16th IFIP World Computer

Congress 2000, Beijing, China (Aug., 2000).

[5] Michael Stumm and Sognian Zhou, “Algorithms Implementing

Distributed Memory”, IEEE Computer, 23(5), Msy 1999, pp – 54-64

[6] Martin Josef Geiger‚ SanjaPetrovic, “An Interactive Multicriteria

Optimisation Approach To Scheduling, Automated Scheduling”‚

Optimisation& Planning Research Group

[7] B. Kruatrachue and T. Lewis, “Duplication Scheduling Heuristics: A

New PrecedenceTask Scheduler for Parallel Processor Systems”,

Technical Report, Oregon State University (1987).

[8] K Ramamritham, JA Stankovic, “Scheduling algorithms and operating

systems support for real-time systems”, Proceedings of the IEEE, 1994

[9] ArnavWadhonkar, Deepti Theng, “A survey on different scheduling

algorithms in cloud computing,”, 2016 2nd International Conference

on Advances in Electrical, Electronics, Information, Communication

and Bio-Informatics (AEEICB)

[10] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas and Willy

Zwaenepoel, “Distributed Shared Memory on Standard Workstations

and Operating Systems”, Department of Computer Science, Rice

University, Houston, TX 77251-1892

https://en.wikipedia.org/wiki/Distributed_shared_memory

