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Abstract— Learning from distributed data sets is common 

problem nowadays and the question of its actuality can be 

inferred by the number of applications and from even higher 

number of problems coming from real world business solutions. 

Here we will review the question of distributed classification 

with Support Vector Machines, and present our approach to 

handle the problem in effective way. 

Index Terms— Machine Learning, SVM, Distributed SVM, 

Kernel Methods, Distributed Computation.  

 

I. INTRODUCTION 

Learning from distributed data is actual problem 

nowadays, and there are many methods for coping with this 

problem with various machine learning algorithms including 

SVM, Decision Trees, LPC, Neural Networks and etc. Here 

we specifically address to SVM, and the justification of that 

comes from its practical use. Whether in which cases, what 

classification method should be used is beyond our topic, but 

practice shows that there is no such algorithm that covers all 

needs. 

Formally, classification problem is the following. We are 

given a dataset 𝑆 , a hypothesis set  𝐻  and in some cases 

performance criterion 𝑃. The chosen learning algorithm 𝐿 as 

an output gives ℎ ∈ 𝐻. Dataset 𝑆is the set of labeled training 

examples, and each of them is 𝑛 dimensional vector, where 

each component is drawn from predefined value space. Here, 

for clearance, we will review only real valued examples. The 

aim for learning ℎ is that we want to predict label for future 

unlabeled examples.  

In distributed environment the problem statement changes. 

In these cases we have 𝑆1 , 𝑆2 , …𝑆𝑘  datasets, and set of 

restrictions R, which may be empty in some cases. R is meant 

to represent unique constraints of environment, for example 

communication cost, data privacy and etc. The aim is to 

construct SVM, so that it will be the same as if we 

constructed SVM on  𝑆𝑘
𝑘
𝑖=1 , or it will approximate 

SVM( 𝑆𝑘
𝑘
𝑖=1 ) with any ε accuracy. 

II. SUPPORT VECTOR MACHINES 

 

Assume we are given  

𝑆 =    𝑥𝑖 , 𝑦𝑖  𝑖 =  1, 2, . . . , }  ⊂ 𝑅𝑑 × 𝑌 

Where 𝑥𝑖  belongs to 𝑅𝑑  and label 𝑦𝑖 ∈ 𝑌. The aim is to 

construct hypothesis ℎ ∶ 𝑅𝑑 → 𝑦 so that ℎ(𝑥𝑖) will be close 

to 𝑦𝑖  for predictingℎ(𝑥) for unknown 𝑆. For simplicity, we 

will assume that 𝑌 =  +1, −1  which is called binary 

classification problem. 
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Main principle of SVM is to separate the given space by 

hyper plane, but in practice given dataset is not linearly 

separable, because of this, we consider the case when dataset 

is not linearly separable. This problem in centralized systems 

solved with kernel methods. That is, the given𝑑 dimensional 

space mapped into higher dimensional space 𝑅′  with the 

functionჶwhere sample 𝑥becomesჶ(𝑥). Practically we are 

interested in production of ჶ(𝑥𝑖)ჶ(𝑥𝑗 ) and not in exact value 

of ჶ(𝑥). The method as result outputs new linearly separable 

dataset. The problem of SVM in linear separable case is as 

follows 

 

 

min
𝛼∈𝑅𝑙

=  𝑎𝑖

𝑙

𝑖=1

+  𝑦𝑖

𝑙

𝑖=1

𝑦𝑗𝑎𝑖𝑎𝑗𝑥𝑖𝑥𝑗  

𝑠. 𝑡  𝑎𝑖

𝑙

𝑖=1

𝑦𝑖 = 0 

0 < 𝑎𝑖 < 𝐶 , 𝑖 = 1,2 …𝑙 
 

It is known constraint optimization problem. It is properly 

proved by applying KKT  [1] conditions in SVM base 

problem [1]. Let 𝐾 𝑥𝑇 , 𝑧 𝑅𝑑 ∗ 𝑅𝑑 → 𝑅 be an inner product 

kernel function which satisfies Mercer’s condition. We will 

construct the nonlinear map function in the way 

that 𝐾 𝑥𝑖
𝑇 , 𝑥𝑗  = ჶ(𝑥𝑖

𝑇)ჶ(𝑥𝑗 ), which means we don’t have to 

give the function ჶ explicitly, because only inner product is 

needed. SVM with kernel function becomes the following 

problem. 

 

ℎ 𝑥 =  𝑢𝑗𝐾 𝑥𝑖
𝑇 , 𝑥𝑗  

𝑢𝑗≠0

+  𝑏 

III. DISTRIBUTED APPROACH 

Here we will assume, that each of the datasets 𝑆𝑖 , 𝑖 =
1, . . 𝑘, is linearly separable. Firstly let’s review the case when 

the  𝑆𝑘
𝑘
𝑖=1  is linearly separable as well.  

The basic approach, that is learn SVM in distributed 

system separately, and then combine support vectors. This 

approach is easy to interpret and cost effective, only support 

vector transfer is needed. Although practically it works, but 

(Caragea, Silvescu & Honavar 2000) showed that 𝑆𝑉 (∪
𝑆𝑘)  ≠ 𝑆𝑉 (∪ 𝑆𝑉(𝑆𝑘)), consequently it’s not exact solution to 

even the simple case when  𝑆𝑘
𝑘
𝑖=1  is linearly separable. 

In [4] is shown that the convex hulls of the instances that 

belong to the two classes is sufficient for learning SVMs 

from distributed data. Let 𝐶𝑜𝑛𝑣(𝑆) be the convex hull of set 

𝑆. The algorithm calculates convex hulls  𝐶𝑜𝑛𝑣(𝑆𝑖(+)) and 

𝐶𝑜𝑛𝑣(𝑆𝑖(−)) for all 𝑖 = 1,2, …𝑘 and sends it to computation 
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center. Then on the union of positive and negative convex 

hull centralized SVM is applied. It’s also shown in (Gruber & 

Wills 1993) that 

 

𝐶𝑜𝑛𝑣( 𝑆𝑘

𝑘

𝑖=1

) =   𝐶𝑜𝑛𝑣(𝑆𝑘)

𝑘

𝑖=1

 

 

Which solves the problem of exact SVM, but it is not 

effective, as long as convex hulls may be too big and its size 

growing exponentially depending on data dimensionality. It 

can be seen that we can minimize this transfer by dividing the 

exchanging procedure. To do this at each step we will 

calculate support vectors step by step that is we calculate 

support vectors at one point, then, broadcast these vectors to 

all participants. Every participant connects this support 

vector to its data set and builds SVM, then it broadcasts its 

vectors to all participants, this process continues until at some 

point all participants have the same support vectors. It is 

obvious that this process converges, because in worst case 

participants will exchange all their data, which is practically 

not feasible in case when  𝑆𝑘
𝑘
𝑖=1  is linearly separable. In fact 

what we do here is constructing support vectors that would be 

convex hull of  𝑆𝑘
𝑘
𝑖=1 , step by step construction allows to be 

sure that set of support vectors will be minimum, because at 

each step we add support vectors to our global set only if it is 

required for some of participants and only in that case. 

In practice there are many cases when  𝑆𝑘
𝑘
𝑖=1  is not 

linearly separable. And in this case by merely combining 

support vectors we cannot achieve any reasonable results. 

Here we purpose the following approach. Firstly, we 

construct SVMs separately at each point. To combine these 

SVMs we can use kernel trick. To do this we map set of hyper 

plans to a new space, in a way that the mapping reflects shape 

of hyper planes with hyper plane in new space. Below figures 

show the visual example of this case 

 

 
Figure 1. Linearly non separable sets, which can be 

divided into two linearly separable sets 

To handle the problem, we must find kernel function that 

would map these points to new space where data is linearly 

separable. It is known that choosing SVM kernel function is 

something that achieved by employing kernels, and the best 

one is chosen by experiments, that is there is no universal best 

Kernel function. Below is the visualization of the results we 

want to achieve  

 
Figure 2. mapping data points to higher dimensional 

space with kernel tricks 

 

It is obvious that the kernel function can be constructed by 

hand, and the final result would be the same as if we had data 

in one place or at least we can approximate its accuracy by 

any ε. Practically, the solution with distributed data gives 

huge advantage in efficiency. Kernel functions calculate huge 

matrixes which is dependent on data samples count, by 

calculating kernel function only on support vectors reduces 

computation cost, because number of support vectors are 

much smaller that dataset power. In [6] there is result 

considered family of Gaussian Kernels which proved to be 

simple in interpretation and very flexible. To interpret kernel 

function, the following should be done. All we need to do is 

to map the points of one class in positive axis of new space, 

and to the opposite to new second one. It is obvious that it can 

be done for each dataset, because they are already linearly 

separable. It is also conceivable that mere combining of these 

mappings will give us all dataset mapped in new space with 

exact separation of classes. And thus we will have not one, 

but the vector of kernel functions, at each one corresponding 

to one of given datasets. 

IV. CONCLUSION  

Results provided here that the nature of SVM gives wide 

specter of improvisations in distributed environments. It is 

possible to achieve exactly the same results as in centralized 

cases, and even with fewer computations. Further 

investigation could be done to make it clear the form of 

kernel functions used in the case, when we join linearly 

separable case, despite Gaussian Kernels are comparably 

useful here, but these kernels are not designed to this specific 

case. These are our first steps towards the effective solution 

in distributed environments with this approach. 
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