Molecular Interaction Studies of Binary Mixtures of Acetophenone with Butylamine, Cyclohexylamine, Dipropylamine, and Dibutylamine at T = (303.15, 308.15 and 313.15) K

P.G. Bamane, D.R. Ambavadekar, M.V. Rathnam

Abstract— Measurement of densities (ρ), viscosities (η) and ultrasonic speeds of sound (u) has been carried out for binary mixtures of acetophenone with butylamine, cyclohexylamine, dipropylamine, and dibutylamine at T = (303.15, 308.15 and 313.15) K. The experimental data have been used to calculate the excess molar volumes (VE), deviation in viscosity ($\Delta\eta$,), isentropic compressibility (Ks), deviation in speeds of sound (Δu) and deviation in isentropic compressibilities (ΔKs). These excess properties were correlated with Redlich-kister polynomial equation. Further the predictive ability of some selected viscosity models (Tamura-Kurata, Heric, McAllister (4-body)) was tested. The Speeds of sound data were also correlated using Vandel-Vangeel, and Jouyban-Acree models. The results were interpreted in terms of inter molecular interactions.

Index Terms— Density, Viscosity, Excess molar Volume, Speeds of sound, Iscentropic compressibility.

I. INTRODUCTION

Thermophysical properties of Keto-amine liquids and their mixtures have found most significant applications in various types of industries. Acetophenone is an organic compound used as an ingredient in perfumes and as a chemical intermediate in manufacturing pharmaceuticals, resins, flavouring agents. Cyclohexylamine is the precursor to sulfonamide based reagents, used as an accelerator for vulcanization. It is a building block for pharmaceuticals (Viz : mucolytics, analgesics, and bronchodilators). Butylamine is used in the manufacture of pesticides, pharmaceuticals and emulsifiers, while dibutylamine is used as a corrosion inhibitor in the manufacture of emulsifiers. Dipropylamine a moderately soluble in water is primarily used to produce pesticides, Zeolites. It occurs naturally in tobacco.

Survey of literature reveals that in recent years there have been some studies on molecular interactions for binary mixtures of (esters + acetophonone) [1- 4], (N,N DMA + P-chloroactophenone) [5] (acetophenone + 2–alkanols) [6], (acetonitrile + acetophenone) [7], (butylamine + alcohols) [8], (butylamine + alkoxy propanols) [9], (cyclohexylamine + butylcarbitol) [10], (butanol + cyclohexylamine) [11], (Chloroform + dipropylamine) [12], (alkylamine + non-electrolyte solvents) [13] and (Ketone + amine) [14]. However there are no reports of ultrasonic velocities for binary mixtures of acetophenone with butylamine, cyclohexylamine, diproplylamine, and dibutylamine in the literature. Therefore in this study we report the density (ρ) , viscosity (η) , and ultrasonic speeds of sound (u) for binary mixtures of (acetophenone + butylamine), (acetophenone + cyclohexylamine), (acetophenone + dipropylamine) and (acetophenone + dibutylamine) at T = (303-15, 308.15 and313.15) K. From the experimental data, excess molar volumes (V^E), deviation in viscosities ($\Delta \eta$), isentropic compresibility (Ks), deviation in Speeds of sound (Δu) and deviation in isentropic compressibility (ΔKs) were evaluated at the respective temperatures. The excess or devialtion results were fitted to the Redlidh-kister [15] polynomial equation. The viscosity- molefraction data pair were used to test the correlating viscosity models, proposed by Tamura-Kurata [16], Heric (two – parameter) [17] and Mc Allister (4-body) [18]. Further the ultrasonic speeds of sound data were used to test the correlating models proposed by Vandel- Vangeel [19] and Jouyban – Acree [20] at all the studied temperatures.

II. EXPERIMENTAL

The liquids acetophenone, butylamine, cyclohexylamine, (Singma, Aldrich) diproplylamine, and dibutylamine (Fluka)of the highest purity of >99.5% were used as such without further purification. The purities of these chemicals were checked by density determination at 303.15 K. The density (ρ) viscosity (η) and speeds of sound (u) of the pure liquids at (303.15, 308.15 and 313.15)K are included in Table 1 along with the available literature values for comparison. The agreement is found to be satisfactory. Binary liquid mixtures of various compositions covering the entire mole fraction range were made on a digitial electronic single pan balance (Mettler, AE 240, Switzerland). The uncertainty in the mole fraction estimated was found to be less than $\pm 1 \text{ x}$ 10⁻⁴. For all the mixtures and pure solvent triplicate measurements were performed and the average of all values were considered in the calculation of molefractions. Densities of pure liquids and the binary mixtures were determined using a Rudulph research analytical densimeter (DDH - 2910 USA). The uncertainty in the density measurement was found to be $\pm 5 \times 10^{-4} \text{ g.cm}^{-3}$. Viscosities were determined using an Ubbelhode viscometer. The flow time of each sample was measured by suspending viscometer

P.G.Bamane, Department of chemistry. B.N. Bandodkar College of **D.R.Ambavadekar**, Department of chemistry. B.N. Bandodkar College of Science, Thane-India

M.V.Rathnam, Department of chemistry. B.N. Bandodkar College of Science, Thane-India

in a low temperature viscometer bath (Cat No : KVB 04/SP Sr No 2 KX – 03-375, Watts 1500, Volts 1-230) supplied by S.Kumar Mumbai, India. The temperature of the viscometer bath was controlled within \pm 0.01K. The uncertainty in dynamic viscosities is of order of \pm 0.003 mPa.s The ultrasonic velocities were measured at 2 MH_z with a single crystal variable path interferometer (F-8 Mittal Enterprises, New Delhi). The uncertainty in Speeds of sound was found to be \pm 0.6%. The instrument calibration was made by measuring the velocity in standard liquids Viz AR grade benzene, and carbon tetrachloride. The temperature of the measurement was controlled within \pm 0.01K using low temperature bath (INSREF [R] 016C India) by circulating water from thermostat.

III. RESULTS AND DISCUSSION:

The experimentally measured densities (ρ), viscosities (η), speeds of sound (u) and the calculated excess molar volumes (V^E), isentropic compresibilities (Ks) for the binary mixtures of (Acetophenone + butylamine), (acetophenone + cyclohexylamine) (acetophenone + dipropylamine) and (acetophenone + dibutlylamine) at T = (303.15, 308.15 and 313.15) K are reported in Table 2. The excess molar volumes (V^E) were calculated from density data using the following relation.

$$V^{E} = \sum x_{i} M_{i} (\rho^{-1} \cdot \rho_{i}^{-1})$$
(1)

$$i=1$$

Where Mi, ρi and ρ are the molar mass, density of the i^{th} component and density of the mixture respectively.

The deviation in viscosity $(\Delta \eta)$ from a linear dependence on mole fraction were calculated by

$$2 \qquad \Delta \eta = \eta - \Sigma x_i \eta_i \qquad (2)$$

Where η is the viscosity of the mixture and $x_i\eta_i$ are the mole fraction and viscosity of pure component *i*, respectively.

The deviation of the speeds of

sound (Δu) were calculated using the following relation.

$$\Delta u = u - \Sigma x_i \quad u_I \qquad (3)$$

$$i=1$$

$$K_s = (\rho \ u^2)^{-1} \qquad (4)$$

$$\Delta K_s = K_s - \Sigma (x_i (Ks)_i) \qquad (5)$$

$$i=1$$

where $(Ks)_i$ is the isentropic compressibility for the ith component of the mixture. The results of excess volumes and the deviation properties were fitted to the Redlich-Kister [15] polynomial equation

$$Y = x_1 x_2 \sum_{i=1}^{m} A_i (x_1 - x_2)^{i-1}$$
(6)

Where m is the number of estimated parameters and

polynomial coefficients A_i^{15} were obtained by fitting the equation to the experimental results.with least square regression method. The standard deviations (σ) are defined as

$$\sigma(y) = \{ (\sum (Y_{exp} - Y_{cal})^2 / (n - m)) \}^{1/2}$$
⁽⁷⁾

Where y is the property concerned, n and m represent the number of experimental data points and that of estimated parameters used in equation (6. The value of coefficients A_i^{15} of equation (6) and the corresponding standard deviation obtained by equation (7) are given in Table 3. The values of $V^{E}, \Delta n, \Delta u$ and Δk at T = (303.15, 308.15 and 313.15) K were graphically represented in figs 1-4. Figure1 shows the variation of V^{E} against mole fraction (x_{1}) of acetophenone. It is observed that the values of V^E are found to be positive for (acetophenone + cyclohexylamine), while for the remaining studied systems the V^E values are negative through out the entire range of composition at all the studied temperature stated behavior of V^E may be attributed to the resulting contribution of several opposing effects [28] viz : Chemical, Physical and Structural. The chemical or specific interactions results in volume contraction leading to negative V^E. These type of interactions mainly signify the charge transfer complexes, dipole-dipole and dipole-induced dipole effects in the mixture. As observed in figure 1 the positive V^E value, of acetophen- one + cyclohexylamine mixtures may be due to differences in polarizability making the dominance of repulsive forces leading to structural effects arising from interstitial accommodation. While in case of other studied systems the negative V^E may be attributed to the dipole – dipole interactions resulting in the formation of electron transfer complexes. As amines with nitrogen atoms are the best donors [29] possessing lone pairs of electrons on them. This type of similar trend is also observed in N, N-dimethly formamide with ketones [30] The deviation of $\Delta \eta$ with mole fraction (x_{1}) of acetophenone mixtures at (303.15, 308.15) and 313.15) K is shown in figure 2. It is observed that the $\Delta\eta$ values show completely positive trend for (acetophenone + cyclohexylamine) mixtures., while for the remaining systems the $\Delta \eta$ values show negative deviation over the entire composition range of acetophenone. These negative $\Delta \eta$ values suggest that dispersion forces are dominant in mixtures of (acetophenone + butylamine), (acetophenone + dipropylamine) and (acetophenone + dibutylamine). The existence of dispersion forces indicate that the component molecules have different molecular sizes and shapes [31]. According to Fort and Moore [32] the deviation in viscosity tends to become more positive as the strength of the interaction between component molecules increases.

Fig 3 represents the deviation in $\Delta\mu$ against mole-fraction of acetophenone (x_1) . The $\Delta\mu$ values exhibit negative deviations for all the binary systems studied at T = (303.15, 308.15 and 313.15)K. over the whole composition range. These negative deviation in $\Delta\mu$ may be attributed to structure breaking factor in the mixing components resulting to the expansion [32]. Fig 4 shows the deviation in isentropic compressibility (ΔK_s) against mole fraction of acetophenone (x_1). It is found that the ΔK_s values in our present study may be attributed to the differences in size and shape and the mask

of unlike component in mixtures, while are negative ΔK_s values indicate the strong molecular dipole-dipole typeinsteractions, enterstite accommodation and corealted using the following empirical equations. entational ordering.

(acetophenone + butylamine) and (acetophenone + diproplyamine) mixtures, while for (acetophenone + cyclohexylamine) and for (acetophenone + dibutylamine) mixture, the ΔK_s values are positive over the entire composition range at all the studied temperatures. The positive ΔK_s values in our present study may be attributed to the differences in Tamura and Kurata [16] proposed the one parameter relation for the viscocity of binary liquid mixtures.

 $\eta_{\text{mix}}) = x_1 \phi_1 \eta_{i+} x_2 \phi_{2\eta 2} + 2(x_1 x_2 \phi_1 \phi_2) 1/2.\mathbf{C}$ Where C = η_{12} , $\phi_1 \phi_2$ are volume fractions Heric [17] proposed a two – parameter relation $\ln(\eta_{\text{mix}}) = x_1 \ln\eta_1 + x_2 \ln\eta_2 + x_1 \lnM_1 + x_2 \lnM_2 - \ln(x_1 M_1 + x_2 M_2)$

 $+x_1x_2[y_{12}+y_{21}(x_1-x_2)]$ (9)

Where y_{12} and y_{21} are the adjustable parameters, M_1 and M_2 are the molar masses of pure components.

McAllister [18] proposed a four-body equation which is a quadratic education having three interaction parameters. This model approaches more nearly a three dimensional treatment and the molecular diameter is greater than 1.5. The equitation of this model applied to kinematic viscosity as

 $\begin{aligned} \ln v_{\text{mix}} &= x_1^4 \ln v_1 + 4x_1^3 x_2 \ln v_{1112} + 6x_1^2 x_2^2 \ln v_{1122} \\ &+ 4x_1 x_2^3 \ln v_{2221} + x_2^4 \ln v_2 - \ln[x_1 + (x_2 M_2 / M_1)] \\ &+ 4x_1^3 x_2 \ln[\{3 + (M_2 / M_1)\}/4] \\ &+ 6x_1^2 x_2^2 \ln[\{1 + (M_2 / M_1)\}/2] \\ &+ 4x_1 x_2^3 \ln[\{1 + (3M_2 / M_1)\}/4] \\ &+ x_2^4 \ln(M_2 / M_1) \end{aligned} \tag{10}$

Where v_{mix} , v_1 , v_2 are the kinematic viscosities. The speeds of sound (*u*) data were correlated by using the following empirical equations.

Vandel–Vangeel [19] Proposed

$$u = [(x_1/M_1 u_1^2 + x_2/M_2 u_2^2 (x_1M_1 + x_2M_2)^{1/2} \quad (11)$$

Where u_1 and u_2 are the speeds of sound of pure components 1 and 2 respectively, M_1 and M_2 are the molecular weights of pure components

Jouyban –Acree [20] proposed the following relation $\ln u = x_1 \ln u_1 + x_2 \ln u_2 + A_0 [x_1 x_2/T]$ $+ A_1 [x_1 x_2 (x_1 - x_2)/T] + A_2 [x_1 x_2 (x_1 - x_2)^2/T]$ (12)

Where A_0 , A_1 and A_2 are the model constants

The predictive ability of eqs [8-12] was tested by calculating the standard percentage deviation (σ between the experimental and calculated property values as.

 $\sigma\% = [1/(n-k) \sum \{100(Y_{exp} - Y_{cal})/Y_{exp}\}^2]^{1/2}$ (13)

Where 'n' represents the number of data points in each set and 'K' the number of numerical coefficients. y is the concerned Property.

The values of coefficients obtained by eqs. (8-10) along with the value of σ % are included in Table 4. while the coefficients obtained by eqn (11-12) of speeds of sound are included in Table 5 along with the σ % values.

Esamanition of σ % values of Table 4 shows that for one parameter Tamura - Kurata equation the σ % values lie in the range of (0.01 – 0.14). Heric two-Parameter (0.01 - 0.09) and McAllister (four-body) three parameter (0.00 – 0.01). These

 σ % values clearely indicate the McAllister models predicts very low values as compared to Tamura-Kurata and Heric modeles. From this it is apparent that as the number of parameter increases in a models equation the predictive abilitie of that equitation also increases.

The $\sigma(\sigma\%)$ values for speeds of sound in Table 5 indicate that for Vandel –Vangeel relation these values are in the range (0.004 – 0.557) and for Jouyban – Acree (0.001 – 0.014). The low $\sigma(\sigma\%)$ values Jouyban-Acree confirm once again our earlier arguments that Jouyban – Acree model with three paramenters provided the best results as compared to Vandeal-Vangel equation.

IV. CONCLUSION

Density (ρ) , Viscositie (η) and Speeds of sound (u)properties were experimentally determined for binary mixtures of acetophenone with butyl amine, cyclohexylamine, dipropylamine, and dibutylamine at T =(303.15, 308.15, and 313.15) K over the entire range of composition. Excess molar volumes (V^E), deviation in viscosity (Δn) , deviation in speed of sound, deviation in isentropic compressibility (ΔK_s) were evaluated from the experimental data. These excess properties were found to exhibit both positive and negative deviations. It in concluded that the magnitude of various contributions depends on the relative size and shapes of the components and also the existence of diploe -dipole interactions. From the analysis of $\sigma\sigma\%$ values as obtained for viscosities and speeds of sound data, it can be concluded that the model equation with more number of adjustable parameters has the best predicative ability as compared to the equation with no adjustable parameters.

REFERENCES

- M.V. Rathnam; Sudhir Mohite, M. Nandini, (2017) Excess Volumes, viscosities and Refractive, Index for the binary mixtures of Acetophenone, Cyclopentanone, Cyclohexanone, and 3-Pentanone with Dibutyl maleate at T = (303.15, 308.15 and 313.15)k Int J. Eng. Res Appli P.P. 4, 30-41
- [2] M.V. Rathnam : Sudhir Mohite : MSS.kumar (2012) MVolumetric Viscometeric and optical study of molecular inter actions in binary mixtures of diethyl maleate with ketones at 303.15, 308.15 and 313.15 k. J.Serb Chem Soc. 77(4) PP. 507-521.
- [3] M.V.Rathnam. : Sudhir Mohite : MSS. kumar 2011. Thermophysical properties of binary mixtrues (dimethyl carbonate + Ketones) at T = (303.15, 308.15 and 313.5) K. J mol liqs , 163, PP 170-177.
- [4] Rathnam M.V. : Sudhir Mohite : MSS kumar 2010. Densities, Viscosities, and Refractive indices of binary mixtures of Diethyl oxalate with some Ketones at (303.15, 308.15 and 313.15) K.J.Chem. Eng Data, 55, PP 5946 – 5952
- [5] M. Gowrisankar. D Venkateswarlu.;K Sivakumar Sivarambabu,
 (2012) S. Thermodyanamics of amine + ketone mixtures 3.
 Volumetric, Speed of Sound data and viscosity at (303.15 and 308.15 K) for the binary mixtures of N,N-dimethyl aniline + propiophenone, + P-methyl aceto phenone, + P-chloroacetophenone. J mol Liqs 173, 172-179.
- [6] A. Mohammad : Hossein Iloukhani, (2010) Densities Viscosities, and Refractive Indices of binary mixtures of Acetophenone and 2 – Alkanols J.Chem Eng Data, 55, PP 1416-1420.
- [7] T.J. Savitha, N. Satyanarayana (2005). Densities and viscosities of binary liquid systems of acetonitrile with aromatic ketones at 308.15 k Indian J Chem 44A, PP 1365-1371
- [8] Wen-Lu Weng, (2000) Densities and Viscosities for binary mixtures of Butylamine with aliphatic alcohos. J Chem Eng Data 45, PP 606-609.
- [9] Amalendu Pal; Rekha Gaba; Sanjay Sharma. (2008) Densities, Excess molor volumes, Speeds of sound, and isothermal compressiblities for

Molecular Interaction Studies of Binary Mixtures of Acetophenone with Butylamine, Cyclohexylamine, Dipropylamine, and Dibutylamine at T = (303.15, 308.15 and 313.15) K

2(2-Hexylo oxyethoxy) ethane + n- Alkylamine at temperatures between 288.15 K and 308.15 K. J Chem Eng Data 53, PP 1643-1648.

- [10] N. Jayachandra Reddy; K. Vijay Lakshmi Subasini, C Ravi Kumar P. Upendra Chowdoji K Rao and M.C.S. Subbha. The Study of thermophysical properties of binary liquid mixtures of 2 – (2-butoxy ethoxy) ethanol (butyl carbitol) with n-butylamine, sec-butylamine, tert-butylamine, n-hexylamine, n-octylamine and Cyclohexylamine at 308.15K. Der Chemica Sinica (2015), 6(5), PP 67-76.
- [11] M. Razaei-sameti, M Rakhshi , (2017) Excess thermodynamic parameters for binary and ternary mixtures of {1-butanol (1) + cyclohexylamine (2) + n-heptane (3)} at different temperature : A theoretical Study Arabian J. Chem 10,PP 691-699.
- [12] M.R. Jose. G. Cristina Solome Ortiz de Landaluce; Juan Lanz. (2000) Vapour-Liquid equilibrium of binary mixtures containing Diethlyamine + Diisopropylamine; Dithylamine + Dipropylamine and Chloroform + Diisoproplamine at 101.3 KPa and vapour pressurs of Dipropylamine J Chem Eng Data 45, PP 867-871.
- [13] S.L. Oswal; S.P. IJardor. (2009) Studies of Patial molor volumes of alkylamines in non-electrolyte solvents V- Alkylamines in toluene at 303.15 K Indian J Chem 48 A, PP 930-939.
- [14] Ivan Alonso; Victor Alonso; Ismael Mozo, Isatas Garcia; Isaias Garcia de la Fuente; Jose Carlos Cobos. (2010) Thermodynamics of ketone + amine mixtures part II. Volumetric and speed of sound data at (293.15, 298.15 and 303.15) K for 2-Propanone + dipropylamine, + dibutylamine or + triethylamine systems. J Mol liqs 155, PP 109-114.
- [15] O.Redilich A.T. Kister, O. Algebric (1948) Representation of thermodynamic properties and the classification of solution. Ind Eng Chem 40, PP 345-348.
- [16] M. Tamura M; Kurata. Bull. (1952) Chem Soc Jpn PP 25, 32
- [17] E.L. Heric (1966) On the viscosity of ternery mixtures. J Chem. Eng Data P.P.11, 66-68
- [18] R.A. Mc Allister, (1960) The Viscosity of liquid mixtures AICHE ; J P.P., 6, 427-431
- [19] W Vandeal; E Vangeel (1969) Proceedings of the first international conference on Calorimetriy and Thermodynamics, Warsaw PP.556
- [20] A Jouyban ;Z Khoubnasb Z Jafari Vaczhooramalkei W.E Fekari; Acree Jr. (2005) Chemical and Pharmaceutical Buletin 53, PP 519-523.
- [21] M.J. Lee S.M.; Hwang, Y. Kuo (1993) Densities and Viscosities of binary solutions containing butyl amine benzylamine and water J Chem Eng Data 38, PP 577-579
- [22] S.C. Oswal H.S., Desai (1999), Studies of viscosity and excess molor volume of binary mixtures 2-butylamine + 1-alkanol mixtures at 303-15 and 313-15k Fluid phase PP-204.
- [23] M Eswari Bai K.G., Neerajakshi,K.S.V.Kirshan Rao, M.C.S. Narayana swamy; subha(2005). J Indin Chem Soc PP82, 25.
- [24] S.L. Oswal P Oswal R.L.; Gardas S.G. Patel R.G., Shinde (2004)Accoustic, Volumetric, compressibility and refractive properties and Reduction parameters for the ERAR and Flory models of some Homologous series of amines from 298-15 to 328.15k Fluid phase Equilib PP 216, 33-45
- [25] S.L.Oswal S.P. Ijardar (2009). Studies of partial molar volumes of alkalmines in non-electrolyte solvents V. Alkyamines in toluene at 303-15 k Indian J. Chem 48 A,PP 930-949
- [26] J. Timmermanr (1965) The Physico-chemical constants of Pure organic compounds vol 2, Elservier, New york
- [27] J.ARiddic. W.B..; Bunger T.K..; Sakano (1986) Organic solvents physical properties and methods of purifications Vol 2 wiley-Interscience, New York
- [28] J.T. Andrzej C. George C. Bonson. (1978) Excess volumes for n-alkanols + n-alkanes II. Binary mixtures of n-pentanol, n-hexanol, n-octanol and n-decunol + n-heptane. J. Chem Thermodyn 10, PP 967-974.
- [29] A. Kirshnaiah D.N. Rao R.P. Naidu (1982) Ultrasonic studies of binary mixtures of chlorbenzone with acetonitrile and propionitirle. Indian J Chem 21 A, PP 290-292
- [30] P. Venkatesu MVP Rao (1996) Excess volumes of N N dimethyl formamide with Katones at 303.15 K J chem Eng Data 41, PP 1059-1060.
- [31] G.P. Dubey M. Sharma N, Dubey (2008) Study of molecular interactions in binary liquid mixtures of 1-octanol with n-hexane, n-octane, and n-decane using volumetric and acoustic properties. J Chem Thermodyn 40, PP 999-1000.
- [32] Y. Reddy P.S. Naidu (1994) Ravindra Prasad K ultrasonic study of acetophenone in the binary mixtures containing isopropanols as common component Indian J.Pure & Appl phys 32, PP 958-963.

APPENDIX

Component	Temp T/K	Density	(ρ) g.cm ⁻³	Viscosi	ty (η) m Pa.s	Ultrasonic Speeds of sound (u)	
		Expt.	Lit	Expt.	Lit	Expt.	Lit
Acetophenone [C ₈ H ₈ O]	303.15	1.0194	1.0199[1] 1.0194[26] 1.0205[27]	1.511	1.511 [27] 1.518[1]	1459	
	308.15	1.0164	1.01619[1] 1.0172[27]	1.378	1.378 [1]	1442	
	313.15	1.0134	1.0135[1] 1.0139[27]	1.291	1.291 [1]	1425	
Butylamine (C ₄ H ₁₁ N]	303.15	0.7322	0.7321[8] 0.7325[21]	0.501	0.501 [27]	1332	1228.9 [9]
	308.15	0.7223	07322[27]	0 431	0 4248 [10]	1316	1205 7[9]
			0.7239[23	01.01	0.1210[10]	1010	120001[7]
	313.15	0.7130	0.7241[10]		0.4249 [23]		
			0.7246[27]	0.207		1204	
			0.71917[22]	0.397		1304	
			0.7229[8]				
			0.7232[21]				
Cyclohexylamine	303.15	0.8578	0.85767[11] 0.85782[27]	1.698		1424	
	308.15	0.8520	0.85314[11]	1.563		1408	
	313.15	0.8462	0.84861[11]	1.403		1393	
Dipropylamine (C ₆ H ₁₅ N)	303.15	0.7285	0.73019[25] 0.7281[27]	0.512		1293	
(0 10)	308.15	0.7239	0.7233[27]	0.460		1277	
	313.15	0.7188	0.7185[27]	0.434		1261	
Dibutylamine [C ₈ H ₁₉ N]	303.15	0.7535	0.75228 [9] 0.7535 [27]	0.838	0.830[27]	1220	1226.7[9] 1227[24]
	308.15	0.7490	0.74817[9] 0.7493 [27]	0.812		1204	1206.9[9] 1206[24]
	313.15	0.7448	0.7451 [27]	0.760		1189	

Table: 1 Experimental and Literature values of densities (ρ), Viscosities (η) and Ultrasonic Speeds of sound (u) of pure liquids.

Molecular Interaction Studies of Binary Mixtures of Acetophenone with Butylamine, Cyclohexylamine, Dipropylamine, and Dibutylamine at T = (303.15, 308.15 and 313.15) K

at different temp	eratures.					
x_1	(<i>p</i>)	V ^E	η	и	Ks	
	(gcm ⁻³)	$cm^3 mol^{-1}$	mPa.S	m.s ⁻¹	Tpa ⁻¹	
Acetophenone + H	Butyl amine				· · · · · · · · · · · · · · · · · · ·	
T = 303.15K						
0 1001	0 7672	-0.222	0.506	1335	731.4	I
0.1813	0.70/2	0.338	0.529	1330	702.2	
0.1615	0.7945	-0.338	0.529	1339	102.2	
0.2029	0.8203	-0.412	0.363	1343	0/5.7	
0.3443	0.8457	-0.455	0.617	1352	646.9	
0.4259	0.8700	-0.463	0.677	1361	620.5	
0.5073	0.8934	-0.447	0.758	1371	595.5	
0.5889	0.9160	-0.405	0.850	1383	570.8	
0.6701	0.9378	-0.352	0.954	1396	547.2	
0.7517	0.9589	-0 274	1.068	1410	524.6	
T = 209.15V	0.7507	0.274	1.000	1410	524.0	
I = 506.15K	0.7570	0.011	0.447	1210	750 6	
0.1001	0.7579	-0.244	0.447	1318	/59.6	
0.1813	0.7855	-0.370	0.470	1321	729.5	
0.2629	0.8123	-0.461	0.507	1326	700.2	
0.3443	0.8378	-0.477	0.552	1333	671.7	
0.4259	0.8627	-0 491	0.609	1341	644 6	
0.5073	0.8866	-0.466	0.686	1351	618.0	
0.5000	0.0000	0.422	0.760	1262	5016	
0.3889	0.9098	-0.422	0.769	1303	591.0	
0.6701	0.9322	-0.367	0.864	13/6	566.6	
0.7517	0.9541	-0.306	0.974	1390	542.5	
T= 313.15 K						
0.1001	0.7491	-0.261	0.419	1304	785.1	
0.1813	0.7771	-0.391	0.441	1307	753.3	
0.2629	0.8043	-0.479	0 477	1311	723.4	
0.2027	0.0045	0.500	0.521	1217	604.4	
0.3445	0.8505	-0.300	0.521	1317	094.4	
0.4259	0.8557	-0.515	0.577	1325	665.7	
0.5073	0.8801	-0.486	0.647	1335	637.5	
0.5889	0.9039	-0.448	0.724	1346	610.6	
0.6701	0.9269	-0.395	0.818	1358	585.0	
0.7517	0.9493	-0.322	0.919	1372	559.6	
Acetophenone $+ c$	vclohexylamine					
T = 303.15K	jeronenjiannie					
1 = 303.13K	0.0722	0.140	1 (007	1404	564.0	
0.1001	0.8/32	0.140	1.6987	1424	564.8	
0.2113	0.8905	0.257	1.7019	1425	553.0	
0.2970	0.9040	0.315	1.7046	1426	544.0	
0.3985	0.9201	0.360	1.7036	1428	533.0	
0.5004	0.9366	0.354	1.6901	1431	521.4	
0.6056	0.9540	0.295	1.6605	1435	509.0	
0.7015	0.9698	0.243	1.6301	1440	497.3	
0.7013	0.0062	0.171	1.5005	1440	494.0	
0.8010	0.9803	0.171	1.5405	1440	464.9	
0.8958	1.0021	0.088	1.5497	1452	473.3	
			T = 308.15 K			
0.1001	0.8674	0.173	1.5579	1409	580.7	
0.2113	0.8850	0.285	1.5589	1410	568.4	
0 2970	0.8988	0 333	1 5598	1411	558.8	
0.3985	0.9151	0.387	1.5544	1413	547.3	
0.5703	0.0220	0.365	1.5297	1415	525 1	
0.3004	0.9320	0.303	1.5387	1410	535.1	
0.6056	0.9496	0.317	1.5142	1419	523.0	
0.7015	0.9657	0.263	1.4813	1424	510.7	
0.8010	0.9825	0.190	1.4432	1430	497.7	
0.8958	0.9985	0.119	1.4083	1435	486.3	
			T- 212 15 V			
0 1001	0.9617	0.102	1 - 515.15 K	1204	507.2	
0.1001	0.801/	0.192	1.4028	1394	597.2	
0.2113	0.8794	0.328	1.4072	1395	584.3	
0.297	0.8933	0.390	1.4103	1396	574.4	
0.3985	0.9101	0.413	1.4076	1398	562.2	
0.5004	0.9272	0.400	1.4002	1401	549.5	
0.6056	0.9450	0.364	1.3806	1404	536.8	
0.7015	0.9614	0.307	1 3502	1400	523.0	
0.7015	0.7014	0.307	1.3374	1414	545.7	
0.0010	0.9780	0.222	1.3333	1414	311.1	
0.8958	0.9950	0.138	1.3108	1419	499.1	
Acetophenone + d	ipropylamine					
T = 303.15K						
0.1011	0.7561	-0.408	0.5354	1299	783.8	
0 2006	0.7830	-0 590	0 5796	1307	747.6	
0 2991	0.8102	-0.715	0.630/	1317	711.6	
0.2000	0.0102	0.713	0.0374	1320	676.0	
0.3900	0.85/5	-0.782	0.7140	1329	0/0.0	
0.4993	0.8670	-0.766	0.8119	1344	038.3	

Table 2 Densities (ρ) Excess molar volumes (V^E), Viscosities (η) Speeds of sound (u) and isentropic compressibility (Ks) for the binary mixtures at different temperatures.

International Journal of New Technology and Research (IJNTR) ISSN: 2454-4116, Volume-4, Issue-8, August 2018 Pages 34-43

0.5051						
0.5971	0.8955	-0.699	0.9207	1361	602.9	
0.6956	0.9253	-0.655	1.0421	1380	567.5	
0.7946	0.9555	-0.515	1.1740	1402	532.4	
0.8981	0.9878	-0.329	1.3316	1429	495.8	
T = 308.15 K						
0.1011	0.7518	-0.457	0.4805	1283	808.1	
0.2006	0.7788	-0.643	0.5180	1292	769.2	
0.2000	0.8061	-0.767	0.5763	1302	731.8	
0.3960	0.8334	-0.814	0.6446	1314	695.0	
0.4993	0.8632	-0.820	0.7312	1329	655.9	
0.5971	0.892	-0.770	0.8291	1346	618.8	
0.6956	0.092	-0.683	0.0291	1365	582.3	
0.0930	0.9217	-0.085	1.0640	1305	545 7	
0.7940	0.9525	-0.389	1.0049	1307	508 5	
U.0901	0.9830	-0.391	1.2100	1415	508.5	
1 = 313.13 K	0.7460	0.494	0.4422	12(9	822 7	
0.1011	0.7469	-0.484	0.4432	1208	832.7	
0.2006	0.7741	-0.687	0.4792	12/7	792.2	
0.2991	0.8014	-0./89	0.5322	1288	752.2	
0.3960	0.8290	-0.860	0.5984	1299	714.9	
0.4993	0.8591	-0.879	0.6791	1314	674.2	
0.5971	0.8881	-0.824	0.7686	1331	635.6	
0.6956	0.9181	-0.742	0.8712	1350	597.6	
0.7946	0.9490	-0.621	0.9920	1371	560.6	
0.8981	0.9820	-0.440	1.1317	1397	521.8	
Δ cetophenone \perp d	libutulomino					
Accophenolic + d	noutynamme					
Accophenolic + d	noutylannie					
- Accophenolic + u						
Accophenolic + 0	noutytamme					
Accoptoner						
Accoptione	noutyrannine					
	noutyrannine					
T = 303.15K	noutyrannine					
<u>T = 303.15K</u> 0.1034	0.7743	-0.273	0.8803	1224	862.0	
T = 303.15K 0.1034 0.2004	0.7743 0.7950	-0.273 -0.492	0.8803 0.9242	1224 1228	862.0 834.1	
T = 303.15K 0.1034 0.2004 0.2968	0.7743 0.7950 0.8164	-0.273 -0.492 -0.594	0.8803 0.9242 0.9717	1224 1228 1232	862.0 834.1 807.0	
<u>T = 303.15K</u> 0.1034 0.2968 0.4016	0.7743 0.7950 0.8164 0.8412	-0.273 -0.492 -0.594 -0.673	0.8803 0.9242 0.9717 1.0281	1224 1228 1232 1236	862.0 834.1 807.0 778.2	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968	0.7743 0.7950 0.8164 0.8412 0.8651	-0.273 -0.492 -0.594 -0.673 -0.690	0.8803 0.9242 0.9717 1.0281 1.0850	1224 1228 1232 1236 1250	862.0 834.1 807.0 778.2 739.8	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526	1224 1228 1232 1236 1250 1276	862.0 834.1 807.0 778.2 739.8 688.8	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278	1224 1228 1232 1236 1250 1276 1308	862.0 834.1 807.0 778.2 739.8 688.8 635.7	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145	1224 1228 1232 1236 1250 1276 1308 1350	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050	1224 1228 1232 1236 1250 1276 1308 1350 1400	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 T= 308 15K	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050	1224 1228 1232 1236 1250 1276 1308 1350 1400	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 T = 308.15K 0.1034	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050	1224 1228 1232 1236 1250 1276 1308 1350 1400	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 T = 308.15K 0.1034 0.2004	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831 0.7702 0.7010	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231 -0.351 0.575	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050 0.8410 0.8706	1224 1228 1232 1236 1250 1276 1308 1350 1400 1206	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0 892.7 866.2	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 $T = 308.15K$ 0.1034 0.2004 0.2064	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831 0.7702 0.7712 0.7910 0.9125	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231 -0.351 -0.351 -0.575 -0.678	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050 0.8410 0.8706 0.9048	1224 1228 1232 1236 1250 1276 1308 1350 1400 1206 1208	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0 892.7 866.3 892.7	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 $T = 308.15K$ 0.1034 0.2004 0.2968 0.4016	0.7743 0.7950 0.8164 0.8651 0.8917 0.9195 0.9510 0.9831 0.7702 0.7910 0.8125 0.8274	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231 -0.351 -0.575 -0.678 -0.678	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050 0.8410 0.8706 0.9048 0.90507	1224 1228 1232 1236 1250 1276 1308 1350 1400 1206 1208 1212	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0 892.7 866.3 837.9 806.2	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 $T = 308.15K$ 0.1034 0.2004 0.2968 0.4016 0.406	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831 0.7702 0.7910 0.8125 0.8374 0.8374 0.8415	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.395 -0.231 -0.351 -0.575 -0.678 -0.752	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050 0.8410 0.8706 0.9048 0.9507 0.9027	1224 1228 1232 1236 1250 1276 1308 1350 1400 1206 1208 1212 1217 12320	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0 892.7 866.3 837.9 806.3 77.7 2	
T = 303.15K 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 $T = 308.15K$ 0.1034 0.2004 0.2968 0.4016 0.4968 0.5974	0.7743 0.7950 0.8164 0.8412 0.8651 0.9195 0.9510 0.9831 0.7702 0.7910 0.8125 0.8374 0.8615 0.9000	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231 -0.351 -0.575 -0.678 -0.752 -0.779	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050 0.8410 0.8706 0.9048 0.9507 0.9967 1.0522	1224 1228 1232 1236 1250 1276 1308 1350 1400 1206 1208 1212 1217 1230	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0 892.7 866.3 837.9 806.3 767.2	
$\frac{T = 303.15K}{0.1034}$ $\frac{0.2968}{0.4016}$ $\frac{0.4968}{0.5974}$ $\frac{0.6958}{0.7988}$ $\frac{0.8968}{0.8968}$ $\frac{T = 308.15K}{0.1034}$ $\frac{0.2004}{0.2968}$ $\frac{0.4016}{0.4968}$ $\frac{0.5974}{0.5974}$	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831 0.7702 0.7910 0.8125 0.8374 0.8615 0.8888 0.0160	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231 -0.351 -0.575 -0.678 -0.752 -0.779 -0.788	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050 0.8410 0.8706 0.9048 0.9507 0.9967 1.0533 1.1220	1224 1228 1232 1236 1250 1276 1308 1350 1400 1206 1208 1212 1217 1230 1254	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0 892.7 866.3 837.9 806.3 767.2 715.5	
$\frac{T = 303.15K}{0.1034}$ 0.2004 0.2968 0.4016 0.4968 0.5974 0.6958 0.7988 0.8968 $\frac{T = 308.15K}{0.1034}$ 0.2064 0.2968 0.4016 0.4968 0.5974 0.6958 0.5974 0.6958	0.7743 0.7950 0.8164 0.8412 0.8651 0.8917 0.9195 0.9510 0.9831 0.7702 0.7910 0.8125 0.8374 0.8615 0.8888 0.9168	-0.273 -0.492 -0.594 -0.673 -0.690 -0.619 -0.510 -0.395 -0.231 -0.351 -0.575 -0.678 -0.752 -0.779 -0.788 -0.671	0.8803 0.9242 0.9717 1.0281 1.0850 1.1526 1.2278 1.3145 1.4050 0.8410 0.8706 0.9048 0.9507 0.9967 1.0533 1.1203	1224 1228 1232 1236 1250 1276 1308 1350 1400 1206 1208 1212 1217 1230 1254 1284	862.0 834.1 807.0 778.2 739.8 688.8 635.7 577.0 519.0 892.7 866.3 837.9 806.3 767.2 715.5 661.6	

1.2791

0.7814

0.8077

0.8385

0.8789

0.9192

0.9672

1.0258

1.0981

1.1819

1378

1189

1190

1192

1195

1204

1225

1254

1300

1350

537.0

923.1

897.1

870.2

839.8

803.8

752.7

695.8

625.6

560.9

0.8968

0.1034 0.2004

0.2968

0.4016

0.4968

0.5974

0.6958

0.7988

0.8968

T= 313.15 K

0.9807

0.7663

0.7872

0.8088

0.8339

0.8582

0.8853

0.9139

0.9458

0.9783

-0.348

-0.412

-0.646

-0.754

-0.845

-0.886

-0.838

-0.785

-0.651

-0.459

Molecular Interaction Studies of Binary Mixtures of Acetophenone with Butylamine, Cyclohexylamine, Dipropylamine, and Dibutylamine at T = (303.15, 308.15 and 313.15) K

Binary mixture	T/K	Excess property	\mathbf{A}_{0}	A_1	A_2	A ₃	σ
Acetophenone+	303.15	V^{E} (cm ³ , mol ⁻¹)	-1.7961	0.6346	-0.0758	0.1992	0.137
butvlamine		Δn (mPa.s)	-1.0202	0.0288	-0.0549	-0.0440	0.057
		$\Delta u(\text{m.s}^{-1})$	-101.11	13.358	5.337	-0.9512	5.819
		ΔKs (TPa ⁻¹)	-7.0957	0.4938	-0.8363	0.5043	0.373
	308.15	$V^{E}(cm^{3}, mol^{-1})$	-1.8673	0.7912	-0.5222	-0.2572	0.139
		Δn (mPa.s)	-0.9109	0.0034	0.0319	-0.0351	0.053
		$\Delta u (m s^{-1})$	-114.90	11.879	0.2192	-11.643	6.516
		$\Delta K_{\rm S}$ (TPa ⁻¹)	-6.4625	0.3645	-0.7650	1.2870	0.330
	313.15	$V^{E}(cm^{3}, mol^{-1})$	-1.9653	0.7395	-0.5440	-0.0119	0.142
	010110	$\Lambda n(mPa s)$	-0.8191	0.0079	0.0687	-0.0360	0.048
		Δu (m s ⁻¹)	-122.52	8.8152	-13 478	-13.805	6.741
		$\Delta Ks (TPa^{-1})$	-6.0755	0.4213	0.4105	1.3362	0.333
Acetophenone+		$V^{E}(cm^{3} mol^{-1})$	1 3891	-0 5116	-0.2446	0 2579	0.176
cyclohexylamine	303.15	(eminior)	1.5071	0.0110	0.2110	0.2077	0.170
		$\Delta \eta$ (mPa.s)	0.3371	-0.0059	-0.0212	0.0121	0.035
		$\Delta u(\mathrm{m.s}^{-1})$	-42.192	-2.3372	9.5266	7.0601	4.051
		$\Delta Ks (TPa^{-1})$	1.4246	-0.2815	-0.7848	-0.3200	0.193
	308.15	$V^{E}(cm^{3}. mol^{-1})$	1.4474	-0.5257	0.0966	0.2294	0.177
		$\Delta \eta$ (mPa.s)	0.2751	-0.0210	-0.2253	-0.0081	0.033
		$\Delta u(\text{m.s}^{-1})$	-37.415	-5.2161	11.5124	2.1885	3.200
		$\Delta Ks (TPa^{-1})$	1.1270	-0.0362	-0.8546	0.0107	0.128
	313.15	$V^{E}(cm^{3}. mol^{-1})$	1.6102	-0.5219	0.2752	0.1464	0.192
		$\Delta \eta$ (mPa.s)	0.2065	-0.0329	-0.1601	0.0199	0.025
				1 0 10 1	11 5060	0.0255	3 1 2 1
		$\Delta u(\text{m.s}^{-1})$	-33.221	-1.3601	11.5968	-0.0333	5.121
		$\Delta u(\mathrm{m.s}^{-1})$ $\Delta \mathrm{Ks} \ (\mathrm{TPa}^{-1})$	-33.221 0.9153	-1.3601 -0.309	-0.7813	0.1575	0.130
Acetophenone + dipropylamine	303.15	$\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E} (cm^{3}. mol^{-1})$	-33.221 0.9153 -3.0315	-1.3601 -0.309 0.5084	-1.3487	-0.0553	0.130
Acetophenone + dipropylamine	303.15	$\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E}(cm^{3}. mol^{-1})$ $\Delta n(mPa.s)$	-33.221 0.9153 -3.0315 -0.7898	-1.3601 -0.309 0.5084 0.0577	-1.3487 -0.0873	-0.0555	0.130
Acetophenone + dipropylamine	303.15	$\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E} (cm^{3}. mol^{-1})$ $\Delta \eta (mPa.s)$ $\Delta u(m.s^{-1})$	-33.221 0.9153 -3.0315 -0.7898 -127.127	-1.3601 -0.309 0.5084 0.0577 -14.945	-1.3487 -0.0873 -7.5818	-0.0555 0.1575 -0.0569 -0.0955 -2.2032	0.130
Acetophenone + dipropylamine	303.15	$\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E} (cm^{3}. mol^{-1})$ $\Delta \eta (mPa.s)$ $\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436	-1.3487 -0.0873 -7.5818 -0.2802	-0.0555 0.1575 -0.0569 -0.0955 -2.2032 0.2079	0.130 0.359 0.089 0.173 0.016
Acetophenone + dipropylamine	303.15	$\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E} (cm^{3}. mol^{-1})$ $\Delta \eta (mPa.s)$ $\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E} (cm^{3}. mol^{-1})$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301	-0.0555 0.1575 -0.0569 -0.0955 -2.2032 0.2079 -0.1306	0.130 0.359 0.089 0.173 0.016 0.351
Acetophenone + dipropylamine	303.15 308.15	$\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E} (cm^{3}. mol^{-1})$ $\Delta \eta (mPa.s)$ $\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E} (cm^{3}. mol^{-1})$ $\Delta n (mPa.s)$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868	-0.0353 0.1575 -0.0955 -2.2032 0.2079 -0.1306 -0.0173	0.130 0.359 0.089 0.173 0.016 0.351 0.083
Acetophenone + dipropylamine	303.15 308.15	$\Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta u(m.s^{-1}) \\ \end{pmatrix}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402	-0.0555 0.1575 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235
Acetophenone + dipropylamine	303.15 308.15	$\Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \Delta Ks ($	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607	-0.0555 0.1575 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970	0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019
Acetophenone + dipropylamine	303.15 308.15 313.15	$\Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ V^{E} (cm^{-1}. mol^{-1}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249	-0.0353 0.1575 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361
Acetophenone + dipropylamine	303.15 308.15 313.15	$\Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \nabla V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta (mPa.s) \\ \Delta \eta (mPa.s) \\ \Delta \eta (mPa.s) \\ \end{pmatrix}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894	-0.0555 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079
Acetophenone + dipropylamine	303.15 308.15 313.15	$\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E}(cm^{3}. mol^{-1})$ $\Delta \eta(mPa.s)$ $\Delta u(m.s^{-1})$ $\Delta Ks (TPa^{-1})$ $V^{E}(cm^{3}. mol^{-1})$ $\Delta \eta(mPa.s)$ $\Delta u(m.s^{-1})$ $V^{E}(cm^{3}. mol^{-1})$ $\Delta \eta(mPa.s)$ $\Delta u(m.s^{-1})$	-33.221 0.9153 -0.9153 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134	-0.0555 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240	0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443
Acetophenone + dipropylamine	303.15 308.15 313.15	$\Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \Delta Ks (T$	-33.221 0.9153 -0.9153 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520	-0.0555 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815	0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \end{array}$ $V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta \kappa s (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \kappa s (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \kappa s (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \end{array}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477	-0.0555 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247	0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15	$ \Delta u(m.s^{-1}) ΔKs (TPa^{-1}) $	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093	-0.0555 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012	0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.341 0.351
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15	$\Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline V^{E} (cm^{3}. mol^{-1}) \\ \hline \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta u(m.s^{-1}) \\ \end{pmatrix}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58	-0.0553 0.1575 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959	0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15	$\Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline V^{E}(cm^{3}. mol^{-1}) \\ \hline \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162	-0.0559 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15 308.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \end{array}$ $\begin{array}{c} V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ V^{E}(cm^{3}. mol^{-1}) \\ \end{array}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157 -3.1243	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817 0.0046	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162 -0.0908	-0.0559 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452 0.2543	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383 0.336
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15 308.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \end{array}$ $\begin{array}{c} V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta \kappa s (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ V^{E} (cm^{3}. mol^{-1}) \\ A \eta(mPa.s) \\ \Delta \eta(mPa.s) \\ \Delta \eta(mPa.s) \\ \Delta \eta(mPa.s) \\ \Delta \eta(mPa.s) \\ \end{array}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157 -3.1243 -0.3865	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817 0.0046 -0.0634	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162 -0.0908 0.0159	-0.0559 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452 0.2543 -0.0137	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383 0.336 0.038
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15 308.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline \\ & \Delta Ks (TPa^{-1}) \\ \hline \\ & \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ & \nabla^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ & \nabla^{E}(cm^{3}. mol^{-1}) \\ & \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ & \Delta Ks (TPa^{-1}) \\ & \nabla^{E}(cm^{3}. mol^{-1}) \\ & \Delta \kappa (TPa^{-1}) \\ & \nabla^{E}(cm^{3}. mol^{-1}) \\ & \Delta \kappa (TPa^{-1}) \\ & \nabla^{E}(cm^{3}. mol^{-1}) \\ & \Delta \eta(mPa.s) \\ & \Delta u(m.s^{-1}) \\ & \Delta Ks (TPa^{-1}) \\ & \nabla^{E}(cm^{3}. mol^{-1}) \\ & \Delta \eta(mPa.s) \\ & \Delta u(m.s^{-1}) \\ & \Delta \eta(mPa.s) \\ & \Delta u(m.s^{-1}) \end{array}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157 -3.1243 -0.3865 -365.975	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817 0.0046 -0.0634 -119.86	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162 -0.0908 0.0159 64.83	-0.0559 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452 0.2543 -0.0137 10.791	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383 0.336 0.038 3.3821
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15 308.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline \\ & \Delta Ks (TPa^{-1}) \\ \hline \\ & \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{E}(cm^{3}. mol^{-1}) \\ \nabla^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{E}(cm^{3}. mol^{-1}) \\ \nabla^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{E}(cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta uu(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \end{array}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157 -3.1243 -0.3865 -365.975 26.962	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817 0.0046 -0.0634 -119.86 -0.7055	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162 -0.0908 0.0159 64.83 -14.296	-0.0569 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452 0.2543 -0.0137 10.791 0.8148	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383 0.336 0.038 3.3821 3.622
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15 308.15 313.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline \\ \Delta Ks (TPa^{-1}) \\ \hline \\ \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{F} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{F} (cm^{3}. mol^{-1}) \\ \nabla^{F} (cm^{3}. mol^{-1}) \\ \nabla^{F} (cm^{3}. mol^{-1}) \\ \nabla^{F} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{F} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \nabla^{F} (cm^{3}. mol^{-1}) \\ \nabla^{F} (cm^{3}.$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157 -3.1243 -0.3865 -365.975 26.962 -3.4452	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817 0.0046 -0.00534 -119.86 -0.7055 0.0388	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162 -0.0908 0.0159 64.83 -14.296 -1.7623	-0.0569 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452 0.2543 -0.0137 10.791 0.8148 -0.4665	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383 0.336 0.038 3.821 3.622 0.318
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15 308.15 313.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline \\ & \Delta Ks (TPa^{-1}) \\ \hline \\ & \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ & \nabla^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ & \nabla^{E} (cm^{3}. mol^{-1}) \\ \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ & \nabla^{E} (cm^{3}. mol^{-1}) \\ & \Delta Ks (TPa^{-1}) \\ & \nabla^{E} (cm^{3}. mol^{-1}) \\ & \Delta \eta(mPa.s) \\ \Delta u(m.s^{-1}) \\ & \Delta Ks (TPa^{-1}) \\ & \nabla^{E} (cm^{3}. mol^{-1}) \\ & \Delta \eta(mPa.s) \\ \Delta uu(m.s^{-1}) \\ & \Delta Ks (TPa^{-1}) \\ & \nabla^{E} (cm^{3}. mol^{-1}) \\ & \Delta \eta(mPa.s) \\ & \Delta uu(m.s^{-1}) \\ & \Delta Ks (TPa^{-1}) \\ & \nabla^{E} (cm^{3}. mol^{-1}) \\ & \Delta \eta(mPa.s) \\ & \Delta \eta(mPa.s) \\ & \Delta \eta(mPa.s) \\ & \Delta \eta(mPa.s) \end{array}$	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157 -3.1243 -0.3865 -365.975 26.962 -3.4452 -0.4213	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817 0.0046 -0.0634 -119.86 -0.7055 0.0388 -0.1532	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.7607 -2.1249 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162 -0.0908 0.0159 64.83 -14.296 -1.7623 -0.0862	-0.0559 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452 0.2543 -0.0137 10.791 0.8148 -0.4665 0.0316	0.359 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383 0.336 0.038 33.821 3.622 0.318 0.033
Acetophenone + dipropylamine Acetophenone + dibutylamine	303.15 308.15 313.15 303.15 308.15 313.15	$\begin{array}{c} \Delta u(m.s^{-1}) \\ \Delta Ks (TPa^{-1}) \\ \hline \\ \Delta Ks (TPa^{-1}) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	-33.221 0.9153 -3.0315 -0.7898 -127.127 -1.0921 -3.2048 -0.7437 -120.747 -1.8452 -3.4010 -0.7149 -114.194 -2.7002 -2.6901 -0.3469 -349.722 24.157 -3.1243 -0.3865 -365.975 26.962 -3.4452 -0.4213 -0.4213 -404.025	-1.3601 -0.309 0.5084 0.0577 -14.945 -0.7436 0.4718 0.009 -13.600 -0.6703 0.3602 -0.0196 -15.700 -0.3232 0.6505 -0.0658 -101.19 -1.6817 0.0046 -0.0634 -119.86 -0.7055 0.0388 -0.1532 -174.95	-1.3487 -0.0873 -7.5818 -0.2802 -1.9301 -0.0868 -4.1402 -0.0894 0.9134 -1.4520 -0.0894 0.9134 -1.4520 -0.0477 0.0093 98.58 -16.162 -0.0908 0.0159 64.83 -14.296 -1.7623 -0.0862 27.78	-0.0569 -0.0955 -2.2032 0.2079 -0.1306 -0.0173 3.6372 -0.3970 -0.0378 0.0396 3.8240 -0.1815 -0.5247 0.0012 -0.6959 3.0452 0.2543 -0.0137 10.791 0.8148 -0.4665 0.0316 5.6772	0.130 0.359 0.089 0.173 0.016 0.351 0.083 0.235 0.019 0.361 0.079 0.443 0.041 0.351 0.034 34.426 3.383 0.336 0.038 33.821 3.622 0.318 0.033 33.092

International Journal of New Technology and Research (IJNTR) ISSN: 2454-4116, Volume-4, Issue-8, August 2018 Pages 34-43

Table: 4 Value of t	the fitting F	Parameters a	nd Percentag	geSstandard D	eviations (σ %)	6) of the Vi	scoity Models f	or Binary Mi	xtures.	
Binary Mixuture	T/K	Tamura-Karata		Heric			McAllister	McAllister (4-body)		
		η_{1}	σ	Y_{12}	Y ₂₁	$\sigma\%$	V ₁₁₁₂	V ₁₁₂₂	V ₂₂₂₁	$\sigma\%$
Acetophenone +	303.15	0.4546	0.67	-0.4893	0.5163	0.06	0.1137	-0.1611	-0.5345	0.02
Butylamine	308.15	0.4162	0.12	-0.4061	0.4417	0.03	0.0485	-0.2948	-0.5975	0.03
	313.15	0.4053	0.14	-0.3323	0.3918	0.03	0.0117	-0.3681	-0.6183	0.03
Acetophenone+	303.15	1.7585	0.04	0.2123	0.0072	0.04	0.4880	0.6500	0.6303	0.01
Cyclohexylamine	308.15	1.5926	0.05	0.1891	-0.0079	0.05	0.3887	0.5681	0.5439	0.00
	313.15	1.440	0.04	0.1560	-0.016	0.04	0.3136	0.4635	0.4543	0.01
Acetophenone	303.15	0.6548	0.12	-0.326	0.344	0.07	0.1582	-0.0217	-0.3877	0.02
+Dipropylamine	308.15	0.5818	0.11	-0.347	0.340	0.08	0.0545	-0.1151	-0.4955	0.02
1 17	313.15	0.5332	0.10	-0.364	0.341	0.09	-0.0193	-0.1797	-0.5733	0.02
Acetophenone +	303.15	1.0833	0.01	-0.131	-0.0035	0.01	0.3062	0.2134	0.1611	0.01
Dibutylamine	308.15	0.9734	0.01	-0.224	0.0067	0.01	0.2112	0.1246	0.0928	0.01
-	313.15	0.8736	0.05	-0.300	-0.053	0.02	0.0959	0.0697	0.0103	0.01

Table 5 Values of the fitting parameters and Percentage Standard Deviations (σ %) for the Uultrasonic Speeds of Sound (u) for Pinow: Mintures

TOT Dinary withtu	es						
Binary mixture		T/K	Vandel-Vangeel	Jouyban-Acre	e		
			$\sigma\%$	A_0	A_1	A_2	$\sigma\%$
Acetophenone	+	303.15	0.215	-20.897	3.835	1.324	0.001
Butylamine		308.15	0.193	-24.767	3.305	0.941	0.002
		313.15	0.173	-27.253	2.643	-2.031	0.002
Acetophenone	+	303.15	0.009	-8.830	0.145	2.159	0.001
Cyclohexylamine		308.15	0.005	-7.999	-0.964	2.354	0.003
		313.15	0.004	-7.305	-0.195	2.610	0.002
Acetophenone	+	303.15	0.071	-25.114	-1.962	-1.241	0.008
Dipropylamine		308.15	0.063	-24.009	-2.869	2.064	0.015
		313.15	0.054	-23.101	-2.224	5.489	0.018
Acetophenone	+	303.15	0.437	-76.962	-17.508	27.353	0.013
Dibutylamine		308.15	0.476	-83.323	-21.132	20.626	0.009
		313.15	0.557	-95.637	-35.021	14.046	0.014

Graphical representation for variation of $\,V^{E},\,\Delta\eta$, Δu and ΔK_{S} with mole fraction of Acetophenone

Accophenone			
Butylamine	(□) at 303.15K	: (0) at 308.15K	: (Δ) at 313.15K
Cyclohexylamine	(x) at 303.15K	: (*) at 308.15K	: (—) at 313.15K
Dipropylamine	(•) at 303.15K	: (+) at 308.15K	: (∎) at 313.15 K
Dibutylamine	(*) at 303.15K	:(▲) at 308.15K	: (o) at 313.15K

Molecular Interaction Studies of Binary Mixtures of Acetophenone with Butylamine, Cyclohexylamine, Dipropylamine, and Dibutylamine at T = (303.15, 308.15 and 313.15) K

