
 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-4, Issue-3, March 2018 Pages 21-25

 21 www.ijntr.org

Abstract- This paper aims to highlight the underlying problem

of AI traversal in virtual game worlds. AI’s self-awareness as an

entity, solely depends on the programmer and hence can run

into problems if it’s not coded properly. The purpose of this

research is to eliminate the various factors involved in the

traversal of AI and provide a simple solution to the problem

that even a novice would be able to code their AI to move

around the terrain of the virtual world or in-game world. By

using collisions, objective markers and virtual invisible points,

the AI can not only move in a 360-degree direction, but cover

sufficient in-game mileage and abstain from traversing in to the

‘danger zones’ which are aptly titled due to them being

inaccessible or missing the collision feature.

The medium of choice to depict the virtual world is Unreal

Engine 4. The reason for choosing UE4 is because it has a

similar layout to other game engines like Unity and hence

migration of code is possible though not without its own trials.

Index Terms- video games, education, simulation, artificial

intelligence.

 I. INTRODUCTION

Video gaming has currently taken the market by storm. In the

last 30 years the industry has gone from simple 2D

platformers like Mario to full blown 3D games with huge

open worlds and stunningly beautiful visuals. While an open

world game certainly looks alluring, the AI at work behind

the several NPCs (non-playable characters) and enemies in

these games is making sure they are a contributing factor in

making the game look „real‟. As such, one of the most

fundamental functions of the AI characters is to move.

Simply walk around or run. While in theory it may sound

simple enough at first glance but the underlying problem this

presents is far greater.

The platforms that an AI object moves on has its very own

collision mesh. As do every other object that it interacts with.

To better understand what a collision mesh is, imagine a thin

piece of layer surrounding the object. This solidifies the game

object preventing any other object to move through it. When

it comes to platforms, it prevents the AI object to „fall

through‟ the platform, providing it a solid path to move on.

Collision mesh on other game objects allow the AI to

recognize the object as an obstacle hence preventing direct

traversal through it.

An example is taken of an in-game object of a boulder. If the

boulder doesn‟t have a collision mesh. The AI can simply

walk right through it since at this moment, it‟s just a 3D

model. However, if collision is applied to it. The AI‟s own

collision mesh will collide with that of the boulder and

prevent movement through it.

Syed Waqas Ahmed, Department of Software Engineering, Sir Syed

University of Engineering and Technology, Karachi, Pakistan

To sum it up every in-game solid object needs to have a

collision mesh and that also goes for the platform on which

the AI is moving.

FIG 1: A PLATFORM WITH A COLLISION

MESH AS DEPICTED BY THE BARELY

VISIBLE GREEN OUTLINE

Once this has been achieved the real problem on how to get

AI to move to a specific point or multiple different points on

that platform arises. Due to diversity in video games, these

platforms can be in many shapes and sizes, the destination

point of the AI can either be 1m away or 100m away. It can

even be on the same platform or another platform divided by

a gap in between. There are hundreds of different situations

depending on the programmer.

For the sake of simplicity, the graphical assets used in this

research were created in both Blender and 3DS Max, after

which they were imported into Unreal Engine 4 and given a

collision mesh. Since both tools are quite similar, this allows

for this research to be effective even in the case where other

graphical tools are being used.

 II. RESEARCH ELABORATIONS

The figures below show the overhead map of the

environments in UE4, i.e. the terrain that was used for the AI

traversal. Multiple environments were created in order to

receive data from multiple situations.

Care was taken to diversify the environments as much as

possible so the results can cover the maximum amount of

ground and leave no variable unchecked.

Syed Waqas Ahmed

Traversal of 3D AI Objects in Virtual Game Worlds

Traversal of 3D AI Objects in Virtual Game Worlds

 22 www.ijntr.org

 FIG 2: TESTING ENVIRONMENT A

Environment A is a vast open environment with vastly wide

and long platforms. There is a narrow pathway between 2

platforms as well.

FIG 3: TESTING ENVIRONMENT B

Environment B starts off with a narrow conjoined pathway

and opens up as you go forward.

 FIG 4: TESTING ENVIRONMENT C

Environment C is created in the form of a simple and narrow

maze.

Care was taken that each environment was as diverse as

possible in order to maximize efficiency.

The AI object used for this study was the default Unreal

Engine 4 mannequin.

 FIG 5: AI OBJECT

The objective is to make this AI move across the

environments on its own. The destination points will be set by

the programmer. Different percepts will trigger different

responses.

First order of the matter is to provide the AI with virtual

boundaries. If the player of the game crosses these boundaries

the AI will move towards the player.

To do so, a PawnSensing component must be added to the AI

mesh. This allows for the manipulation of the virtual

boundaries which comprises of Hearing Threshold, Sight

Radius, Peripheral vision angle among others. They can be

manipulated to hold any value as long as the scene being

created in the game is big enough to accommodate them. The

invasion of these boundaries will act as a percept to trigger

the AI response.

Example: The player character walks into the line of sight of

the AI triggering the AI to „see‟ the player and move towards

them.

Example 2: The player causes a sound effect while inside the

AI‟s virtual boundaries causing the AI to „hear‟ it and move

towards the player

FIG 6: VIRTUAL BOUNDARIES OF THE AI AS

DEPICT ED BY THE COLOURED LINES

In order to code the AI movement behavior, a Behavior Tree

is used. This tree stores every trigger response to specific

percepts. To simply move the AI character towards the

player, you get the player co-ordinates in the game world

using the „GetWorldLocation‟ function and set those

coordinates as the destination co-ordinates for the AI. The AI

will navigate the game world to reach that point in the

shortest distance possible.

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-4, Issue-3, March 2018 Pages 21-25

 23 www.ijntr.org

By default, the path finding algorithm is already integrated in

UE4 so the AI can find its own path and navigate through

obstacles but what if the programmer wants to provide a

specific path to the AI. A path of their choosing.

To create a custom path for the AI, it is necessary to create

specific points on the game map. While these points are going

to be visible in developer mode, they will not be visible to the

player in the executable file. This paper will refer to these

points as „waypoints‟

To create a „waypoint‟, a „billboard‟ component is needed to

be attached to the AI mesh. This billboard can be given

visible form by providing it with a sprite. In this experiment

the following sprite was used to give the billboard a visible

form.

FIG 7: „TARGET‟ SPRITE ADDED TO

BILLBOARD TO FORM A „WAYPOINT‟

Referencing these waypoints in the code will allow to

manipulate how the AI will see them as. For the sake of this

paper the AI needs to see them as destination points.

Once the waypoints are created and attached to the mesh, the

function „GetWorldLocation‟ will once again allow to obtain

the coordinates of the placement of the waypoints in the

world and after that these coordinates will need to be

promoted to a variable. By creating variables of the waypoint

coordinates, the location value of the waypoints will always

be stored thus making it easier to assign them for use in

different functions.

The next step is to set these values as vectors. Simply calling

the function of „Set Blackboard value as Vector‟ and

assigning it, the waypoint variables will accomplish this task.

These vector values will then further be cast on the AI

Object‟s blueprint providing them with the aforementioned

„destination coordinates‟

The programmer can create several waypoints like this. This

experiment was conducted using one, two and three

waypoints each attached to a separate AI object mesh.

Once these steps are performed, these waypoints will show up

on the viewport in the game world as „mesh components‟,

whenever the programmer places the AI objects on the map.

By clicking on these waypoints or selecting them from AI

mesh properties their position in the world can be

manipulated using simple translation.

However extreme care must be taken when appointing a

destination to the AI using these waypoints. These waypoints

must touch a collision mesh on the platform for it to even

register as a destination point, otherwise it will fail to register,

as the coordinates received by these waypoints would be

pointing towards a destination where traversal is impossible.

For this very reason this paper emphasized the importance of

appointing collision meshes to the platforms early on.

The figure below shows the correct and incorrect ways of

waypoint placements.

FIG 8: FROM LEFT TO RIGHT, CORRECT AND

INCORRECT METHODS OF WAYPOINT

PLACEMENT

Once these waypoints are aptly placed, the behavior tree is

used to direct the AI towards these points. The process

involves calling AI reference and giving it a „move‟ function.

This „move‟ function is a pre-built function that appoints a

destination and moves the AI towards it. The destination node

is provided with the waypoint variable, and the waypoint

itself is placed anywhere on the map and provided the

conditions above are met, the AI will move towards the

waypoint.

FIG 9: SETTING UP AI MOVEMENT VIA

BEHAVIOUR TREE

The above figure shows a sample behavior tree used to move

the AI back and forth between 2 way points. The „move‟ and

„wait‟ functions are pre-built functions, while the move

Traversal of 3D AI Objects in Virtual Game Worlds

 24 www.ijntr.org

functions requires a vector variable as input, the wait variable

requires float and integers which here counts as the SI unit

„second‟ for which the AI will stop moving.

One functionality of the behavior tree is by default; the tree

functions will keep on looping. Once the process reaches the

end, it will restart once again. So by that logic, what we have

in our hands is an infinite loop of the AI moving back and

forth between the two waypoints.

Of coursed this is subject to change because at this moment it

is performing a very primitive function and a programmer

wants their AI to be more diverse and execute more actions

like shooting or jumping. But since that would be deviating

from the topic of this paper, it will be disregarded.

There are some other factors that need to be taken note of.

One of them is to assign a traversable area to the AI. It‟s all

well and good when your AI can walk but there needs to be

certain limitation of the traversable area itself. Some areas

which are blocked off, some which just exist as 3D models

like bodies of water without any collision mesh applied to

them. It wouldn‟t be very realistic after all if the AI starts

walking on water or starts to move through blockades into

„danger zones‟ where there‟s a substantial risk that the AI

might fall of the game map completely.

In order to define a strict area for AI traversal, a component

called „Navigation Mesh Bounds Volume‟ is used, also

known more commonly as „NavMesh‟.

The „NavMesh‟ can simply be selected from the Top Down

template tab and dragged onto the scene. It is by default a

transparent cube. By usage of scaling and translation, one is

supposed to make it encapsulate the entire scene or at least the

area which one wants the AI to move in. Then, on the

viewport, pressing the „P‟ key on the keyboard highlights the

AI‟s traversable area. Of course it is subject to change as the

programmer wills, but even by default it provides a very

accurate calculation of the traversal area.

The area however does not limit the player as the player

character‟s control is dependent on the player himself rather

than the AI so in a particular scenario the AI can be „trapped‟

by the limitation of the NavMesh while the player is able to

move freely even outside the NavMesh bounds.

FIG 10: NAVMESH SURROUNDING THE

SCENE AND SHOWING THE AI TRAVERSAL

AREA HIGHLIGHTED IN GREEN

The above picture provides a graphical view of how the

NavMesh surrounding the scene, functions. It automatically

filters out objects with collision meshes that are in its

boundaries so the AI would avoid them in their pursuit of the

waypoints. Thanks to this the AI doesn‟t collide with static

objects and is able to navigate through the green traversable

field to find its destination.

There are other instances where the NavMesh turns red, but it

is hardly a considerable problem, since it only occurs when

you have moved around, one or more objects in the scene so

as a result, it recalculates the entire navigational area again,

hence the red highlights.

This overall AI navigation method can work in various

different ways not just limited to creating waypoints and

having the AI move towards it.

Take a specific game scenario where an enemy upon the

noticing the player, moves towards the player trying to attack

him and wherever the player runs, the AI enemy object

follows. To implement such a scenario, instead of obtaining

the waypoint coordinates and providing it as a vector

destination to the AI, the player‟s world location co-ordinates

are taken instead, via „GetWorldLocation‟, then promoted to

vector variables and appointed as destination nodes to the AI,

this way, instead of moving towards a waypoint, the AI will

now move towards the player, following the player wherever

he goes.

The above function can also be triggered via a percept. Early

on in the paper, virtual boundaries of the AI were explained

which can be used as percepts to trigger AI responses. In the

experiment performed, during the AI‟s traversal between two

points, if a player invades its boundaries, the AI will abandon

its movements towards waypoints and instead follow the

player instead, whilst attacking him.

This scenario was also documented in a video to help readers

better visualize the context, the link of which will be provided

in the „References‟ section of this paper [1].

 III. RESULTS AND FINDINGS

As mentioned above this experiment was performed in 3

different virtual environments. Each environment was vastly

different in terms of terrain quality, texture and size.

Once the traversal feature had been coded in, an AI object

was placed in each environment and it was given 2

waypoints. The distance from the AI to each waypoint was

kept constant, as was the distance between the 2 waypoints.

The experiment was to check whether the AI would travel

from its initial position to Waypoint A and from there to

Waypoint B then continue moving back and forth between

the two points.

Below are the results shown for each of the 3 environments

that were used (pictures of the environments can be found

above)

CONSTANTS:

1) AI Object (UE4 default mannequin)

2) Straight-Line Distance between AI object origin and

Waypoint A (variable value integer: 200)

3) Straight-Line Distance between Waypoint A and

Waypoint B (variable value integer: 200)

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-4, Issue-3, March 2018 Pages 21-25

 25 www.ijntr.org

4) AI movement speed (variable value: 500)

RESULTS:

TESTING ENVIRONMENT A:

AI traversal from origin to

point A

Success

AI traversal from point A to

point B

Success

TESTING ENVIRONMENT B:

AI traversal from origin to

point A

Success

AI traversal from point A to

point B

Success

TESTING ENVIRONMENT C:

AI traversal from origin to

point A

Success

AI traversal from point A to

point B

Success

While the AI movements were largely similar to the proposed

hypothesis, there was some discrepancy in Environment C

since unlike A and B which were vastly open areas,

Environment C was more similar to a maze, so the AI had to

navigate between different paths (using NavMesh to identify

traversable platforms) to reach the goal. While the straight

line distance between the AI and each of the waypoints was

kept constant it was the narrow maze-like environment itself

that turned out to be an obstacle thus delaying the AI to reach

the waypoints.

 IV. CONCLUSION

Using Waypoints, one can easily give as many destination

points to their AI objects and the procedure is so simple that

any unexperienced programmer can use it to create small fun

games on their own.

Pathfinding have always been associated with AI modules

and implementing it in a virtual world is a fundamental aspect

in video game development.

Waypoint creation and coordinate assignment makes the task

much easier and allow developers to save time rather than

look for complicated algorithms to get their AI navigation

perfect.

Of course, waypoint creation is one of the many ways to

assign navigation to AI but compared to other processes it is

relatively simple and easy to manage and integrate.

 REFERENCES

[1] Demonstration Video to document the procedure:

https://www.youtube.com/watch?v=xF7WMBtn2uA&index=11&list=PL5o

5c7sLA1Cg-JbvKfePnvIjMX8lHd0SX

[2] Kevin Smith and Anderson, “Blue print technology in Unreal Engine,

2015.”

[3] Greg Penninck “Modularity for Next Gen Games Designers”

[4] Hans Ferchland “Game UI Prototyping with Unreal Engine 4”

[5] Damien Vurpillot “Aspectus operis and visual attention: from Vitruvius

to Virtual Reality”

[6] Rowan Wilson “Visualizing research data in 3D with Blender”

[7] Ashwin Ram, Santiago Ontanon, and Manish Mehta “Artificial

Intelligence for Adaptive Computer Games”

[8] Firas Safadi, Raphael Fonteneau, and Damien Ernst “Artificial

Intelligence in Video Games: Towards a Unified Framework”

[9] Daniel Johnson and Janet Wiles “Computer Games with Intelligence”

[10] Simon M. Lucas and Diego Perez-Liebana “General Video Game AI:

Learning from Screen Capture”

[11] Aliza Gold “Academic AI and Video games: a case study of

incorporating innovative academic research into a video game prototype”

https://www.youtube.com/watch?v=xF7WMBtn2uA&index=11&list=PL5o5c7sLA1Cg-JbvKfePnvIjMX8lHd0SX
https://www.youtube.com/watch?v=xF7WMBtn2uA&index=11&list=PL5o5c7sLA1Cg-JbvKfePnvIjMX8lHd0SX

