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Abstract— Fault tolerant control of dynamic processes is 

investigated in this paper using an auto-tuning of Adaptive PID 

controller. A fault tolerant control scheme is proposed 

composing an auto-tuning Adaptive PID controller based on an 

adaptive neural network model. The model is trained online 

using the Unscented Kalman filter (UKF) algorithm to learn 

system post-fault dynamics. Based on this model, the Adaptive 

PID controller adjusts its parameters to compensate the effects 

of the faults, so that the control performance is improved. The 

auto-tuning algorithm for the Adaptive PID controller is 

derived with the Lyapunov method and therefore, the model 

predicted tracking error is guaranteed to desired point 

asymptotically. 

Index Terms— Adaptive NN models; auto-tuning Adaptive 

PID; Unscented Kalman filter (UKF); fault tolerant control. 

.  

 

I. INTRODUCTION 

With fast increase in difficulty of modern control systems, 

the importance of the fault tolerant control (FTC) concept and 

technology has been appreciated and accepted by industry. 

Control system stability and reliability are not only vital for 

some projects where stringent safety conditions apply, e.g., 

nuclear power stations and passenger airplanes, but also 

essential for significant productions, since most of present 

industrial plants are complex and often include a number of 

subsystems which may balance for the effects of sensor faults 

and element malfunction.   

This requires solutions that are very costly in both hardware 

and development attempt. Therefore, FTC is very important 

from the viewpoint of safety, as well as reduced production 

costs. FTC offers the ability to avoid accidental process shut 

downs from simple faults, e.g. in instrumentation and control 

loops that could develop into production loss or plant failures. 

Recently, FTC in most real industrial systems are appreciated 

by hardware redundancy. For example, the majority-voting 

scheme is used with redundant sensors to cope with sensor 

faults [1]. However, due to two main limitations of the 

hardware redundancy, high cost, and taking more space, 

solutions using analytical redundancy [1] have been 
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investigated over the last two decades.  

There are generally two different approaches using analytical 

redundancy: 1) passive approaches, and 2) active approaches. 

Passive approaches use robust control techniques to design 

closed-loop systems so that it is numb to certain faults, e.g., 

[2]. In recent times, an elegant design method of passive 

approach was proposed by Chen et al. [3], in which the linear 

matrix inequality (LMI) method was used to synthesis the 

consistent controller. Different faults were formulated as 

constraints in the method and were considered in the optimal 

design using LMI.  While the design example showed the 

stability and maintenance of suitable system performance, a 

limitation is that the method is based on an accurate linear 

state space model and therefore, is not capable of controlling 

nonlinear processes for which an accurate analytical model is 

usually not available.  

In addition, because the passive approaches consider fault 

tolerance in only the stage of controller design without taking 

adaptation when faults occur, the amplitude of the faults that 

can be allowable is usually limited. Active approaches use 

online fault adjustment information and reconfigurable 

controllers. When a fault is identified using analytical or 

hardware redundancy, the controller is reconfigured to 

guarantee the post-fault stability and maintain acceptable 

performance. Active FTC has been explored using different 

methods including the feedback linearization [4], control law 

rescheduling [5], and model following control [6].  

Reconfigurable control against plant component faults has 

been studied using state feedback, where the feedback gain 

matrix was designed using linear quadratic regulation method 

[7], the pseudo inverse method [8] and eigen structure 

assignment method [9]. However, these studies were also 

based on linear models so that they are not suitable for 

nonlinear processes. Model predictive control (MPC) has 

been employed in FTC [10], [11], where an adjustable 

objective function was optimized based on a simple linear 

model. The model was expected to learn the post-fault 

dynamics if the amplitude of the fault is not too large. The 

research utilizing this method is active and the models used 

are extended to nonlinear models. 

 

II.   Structure Of FTC Scheme  

The aim of the FTC is to obtain a control variable to force the 

process to track the preferred trajectory when the process is 

not subject to any error, while to keep up the system 

constancy and to make progress from the performance 

degradation high-speed when fault occurs in the process. 

Allowing for that element or organic processes are difficult 

and their mathematical models are usually unfamiliar, an 

active fault tolerant control approach is developed in this 

section.  
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Figure 1. Structure of the NN-based Auto-tuning PID control system. 

 

The control design includes two parts, one is using a NN to 

model the process and the model is made adaptive to hold the 

dynamics change caused by the fault, another is an 

auto-tuning PID controller based on the model. When the 

model captures the post-fault dynamics, the PID controller is 

modified to balance the degradation of system stability and 

performance. The MLP model is online modified with the 

model calculation error using the EKF algorithm. The 

modified model is used to calculate process output at next 

sample time. The prediction is used by the auto-tuning 

algorithm to derive an optimal control variable. 

In Fig.1 PID controller adapts its parameters in the way that 

the produced control variable will drive the NN model output 

to track the desired reference. A recursive auto-tuning 

algorithm derived using the Lyapunov method will make the 

optimal control that is guaranteed to minimize a squared 

tracking error. The wide line between the model used for 

prediction and that to be adapted indicates that the formation 

and weights are shared between the two models. 

III.   Adaptive Neural Network Model 

A. NN Model 

To model the system dynamics and also to capture the 

time-varying dynamics of the process, an adaptive Multi 

Layer Perceptron (MLP) network model is developed. The 

NARX model used for this multivariable nonlinear system is :

 

            kenky,,...1ky...,,ndku...,,1dkugky yu 

  (1) 

where 
pRy 

and 
mRu 

are the sampled process output 

and input vectors, and ny and nu are the output and input order, 

d is the input transmission delay, e is the measurement noise 

and 
 g

is the vector valued nonlinear function. Similarly, 

the MLP network model used is : 

            kenky,,...1ky...,,ndku...,,1dkuĝkŷ yu 

     (2)   

where 
pRŷ 

is the estimated process output by the NN 

model and 
 ĝ

is an approximated nonlinear function of 

 g
. The MLP network with one hidden layer of neurons is 

implemented. 
   khWkŷ y

  (3) 

where 
 1qpy RW 

is the weight matrix connecting 

output and hidden layers, 
  1qRkh 

 is the hidden layer 

output vector where each entry is transformed from the 

corresponding entry in z(k) by using a sigmoid activation 

function as :   
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,   i = 1, 

2, …, q             (4) 
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        (5) 

where
 1nqh RW 

 is the weight matrix connecting the 

hidden and input layers, 
  nRkx 

where n = mnu + pny + 1  

is the network input vector. Thus x(k) and h(k) are defined 

by :  
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with the last entry introducing bias to the hidden layer. 

 

B. UKF – Based Training Algorithm 

UKF Training The UKF algorithm for NN training is similar 

to that of EKF; again, all the connecting weights are 

organized as a state vector, but now the state is calculated 

through unscented transformation [12], [13] and propagated 

analytically through nonlinear system without the need to 

evaluate the Jacobian matrix. The generic  

UKF can be summarized as in the following steps. 

STEP 1)     Initialization 
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STEP 2)     Calculation of the sigma points 
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where i = 1,2,…,L and L is the state dimension. The 

parameter k is used to control the covariance matrix.  

 

STEP 3)     Time Update 
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STEP 4)     Measurement update 
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C. NN based UKF algorithm 

We attempt to improve the algorithm in [14] under the 

framework of UKF and apply the new method to the problem 

of nonlinear filtering. The state evolution equation and 

observation equation are given as 

 

  kkk

kk1k

vxhy

nxfx





          (13) 

where nk and vk represent process noise and observation noise, 

respectively. We denote ek as the error between true model 

and the a priori known mathematical model
 kxf̂

, namely 

e(k)=f(k) - 
 kxf̂

. We can adjust the weighs of the NN 

through the observation if and only if the observability 

condition is met. When 
0)wx(g)k(e kk 

, the error is 

well approximated, and the more accurate model becomes the 

sum of f(xk)and the NN approximation, so we have : 
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If we represent the augmented state vestors as 
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Because the observation is only related with the state x, the 

equation 
  kkk vxhy 

 remains unchanged. Now the 

estimation of 
a
k

x̂
based on the new model (15) and the noisy 

observation
  kkk vxhy 

. Once given 
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we can get 1L2 a    vectors  
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(i=0,1,…,2La, and La is the dimension of 
a
k

x
), according to 

the equation  
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and at instant k-1 , then the filtering procedure of NN-aided 

UKF can be carried out recursively in the similar way ,but 

now 1k,i1k/k,i  
 and 

 k1k|k,i1k|k,i x,gy  
  are 

replaced by 
 w

1k,i
x

1k,i
a ,f




and 
 x

1k|k,i1k|k,i xhy  
, 

respectively. 

The Procedure of applying the UKF algorithm to the adaptive 

model is given as follows: 

Step 1)    Obtain the past process output yk and past control 

variable u at sample time k to form NN model               input 

vector xk in (4). 

Step 2)      Obtain the current process measurement output yk 

which is used as the training target. 

Step 3)     Update the error covariance matrix kP
using (10) & 

(11). 

Step 4)    Implement the UKF based training algorithm (13)  - 

(18) 

The developed adaptive MLP model is evaluated by 

modeling the simulated CSTR process and this is described in 

Section V. 

IV.   Auto Tuning For Adaptive PID Controller 

In this paper, an adaptive neural model is proposed for the 

multivariable PID controller based on self-learning algorithm. 

The PID controlled tracking error is evaluated using model 

prediction and then an optimal set of PID parameters is 

iteratively approached. Thus, minimum squared tracking 
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error can be obtained. The discrete-time multivariable PID 

controller is considered as : 
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kKiekKkekKku TT

d
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    (19) 

where 
  p

T Rke 
is the process tracking error defined as :

 
     kykyke dT 

 

where 
  p

d Rty 
 is the desired trajectory, T is the 

sampling time, 
pm

p RK 
, 

pm
i RK 

and 
pm

d RK 
are PID controller parameter matrices, and m is 

the number of input. To estimate the optimum PID 

parameters, 
 kK p , 

 kKi  and 
 kKd , a parameter vector 

  mp3
pid Rk 

is formulated as : 
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where 
 kk

jp
, 

 kk
ji

 and 
 kk

jd
denotes the jth row in 

 kK p
, 

 kKi  and 
 kKd , j = 1, 2,…, m. 

Inorder to obtain the optimal control variable in each sample 

period k, an iterative algorithm is developed which 

minimizes the objective function of the predictive tracking 

error. These tuned PID parameters are used at the end of 

sample period to produce control variable. Here the sample 

time is expressed as k and i denotes the iterative step within 

each sample period. Inorder to avoid confusion with the 

iterative step i, variable at sample time “(k)” is change to “|k” 

in the iterative process, such as 
  kpidpid k 

. 

 On predicting 
 kpid

, 
  mp3

pid Riˆ 
is used to denote 

the optimum PID parameters in the iterative process. The PID 

auto-tuning algorithm is defined as : 

           ieiKiˆiˆiˆ1iˆ
tpidpidpidpidpid 

           (21) 

where 
 iKpid

 is the gain matrix, 
  p

t Rie 
is the NN 

model tracking error and eT is the process tracking error. 

   iŷyie k|dt 
 

    kX,iûĝiŷ 
            (22) 

where 
p

k|d Ry 
 is the desired output at sample time k, 

 iŷ
is the NN model output in iterative step i within the 

sample period. 
 iŷ

is a function of the predicted optimal 

control variable, 
  mRiû 

such that : 
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         (23) 

with   
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jpidkpid ekE|E
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 (24) 

In order to derive the gain matrix in Kpid at each iterative step 

i, such that the convergence of the NN model output to the 

desired process output is guaranteed, a discrete-time 

Lyapunov function is chosen as follows: 

  
     ieieiV t

T
t

        (25) 

where  is a positive constant and thus, V(i) is positive 

definite. For V(i) calculation, define 

     ie1ieie ttt 
. In discrete time operation, 

 iˆ
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can be approximated by the derivative of 
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with respect to i . Thus 
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Then, the increment of the Lyapunov function,
 iV

 is 

expressed as : 
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where the gain matrix 
 iKpid

 is given as : 
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Then 
 iV

 becomes, 
       ieie12iV t

T
t

. 

If  < 1 is chosen, then 
 iV

 is always negative. In the 

design of the gain matrix,  < 1 is chosen as the learning rate 

to adjust the self-learning speed of the PID parameters. Due 

to this, the predictive tracking error will converge to zero. 

Thus, when the gain matrix 
 iKpid

is chosen according to 
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(28), the PID parameter vector, 
 kˆ

pid
will asymptotically 

converge to the optimal value at each sampling time in the 

sense of driving the model tracking error to minimum value.  

The Tracking performance of Auto –tuning PID controller is 

as shown in figure. 2  

 
Figure 2. Tracking performance of Auto tuning PID 

controller 

 

The PID auto-tuning procedure is as follows: 

Step 1)    For each sample time k, form the NN model input 

vector X(k) by obtaining the desired trajectory 
 1kyd 

the 

past control variable u (k) and the past process output y (k). 

Step 2)    Implement the PID auto-tuning algorithm given in 

(22), (28), and (21) in iterative form to predict         the 

optimum PID parameter vector, 
 kˆ

pid
. The value at the 

last sample time 
 1kpid 

 is assigned to be the initial value 

 0ˆ
pid

. 

Step 3)    Calculate the optimal control variable 
 iû

 in (23) 

by applying the obtained 
 iˆ

pid
 to the PID        controller. 

Step 4)    Calculate the model output, 
 iŷ

  and model 

tracking error, 
 ie t  in (22) by applying the                  

obtained 
 iû

 to the NN model at each iteration step, i. 

Step 5)    Repeat Step 1 to Step 4 until the NN model tracking 

error, is less than a pre-specified threshold or a specified 

bound to the iterative step is reached. 

Step 6)    Set
 kpid

 to be equivalent to
 finalpid î

 , and 

then apply it to the PID controller in the process. 

 

VI.   Conclusion 

The proposed system employs an adaptive PID controller to 

compensate the fault effects. The convergence of the 

predicted tracking error for auto-tuning algorithm is derived 

with Lyapunov method. In UKF algorithm, the post-fault 

dynamics can be modeled in time and thus, the degradation in 

the process tracking performance and in system relative 

stability is quickly recovered. The adaptive NN model is 

online trained with measurement process input output data 

and consequently, the effects of sensor faults will also be 

modeled. Thus, the sensor faults are not tolerable with the 

developed method. This leads to a process tracking error of 

the size of the occurred sensor fault. The research work can 

be undergone on sensor fault tolerance in processes with 

unknown dynamics. The potential applications include 

different industrial processes with multivariable and 

nonlinear dynamics. 
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