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Abstract—This paper deals with a certain class of projective 

Klingenberg planes over the local ring F[η]/<η^{m}> with F an 

arbitrary field, known as the plural algebra of order m. In 

particular addition and multiplication of points on a line is 

defined geometrically and interpreted algebraically, by using 

the coordinate ring. 

 
Index Terms—plural algebra, local ring, projective 

Klingenberg plane, geometric addition and multiplication.  

 

I. INTRODUCTION 

  Klingenberg in [13] introduced real plural algebras as an 

example of an H-ring without using the name "plural 

numbers". Jukl, in [8], studied the real plural algebra of order 

m and investigated linear forms on a free finite dimensional 

module M, especially their kernel. Jukl continued to study 

free finite dimensional modules in [9]. In [5], Erdogan et. al. 

investigated some properties of the modules constructed over 

the real plural algebra and later, in [6], Ciftci and Erdogan 

obtained an n- dimensional projective coordinate space 

associated with the (n+1)- dimensional free module over this 

real plural algebra. For more detailed information on 

modules, see [14]. For the algebraic and linear algebraic 

notions that will be used throughout this paper, we refer to [7] 

and [15] 

    In this paper we will study a class of projective 

Klingenberg (PK) planes coordinatized by the plural algebra 

(of order m) A:=F+Fη+Fη²+⋯+Fη^{m-1} such that 

η^{m}=0 for η∉F (where F is a field), namely, by the local 

ring F[η]/<η^{m}>. In particular addition and multiplication 

of points on a line is defined geometrically and interpreted 

algebraically, by using the coordinate ring. This generalizes a 

result of Celik and Erdogan [4] for the case of dual numbers 

(m=2).  

II. PRELIMINARIES 

    In this section we will give some definitions and results 

which will be the basis of this paper. 

     

  A ring R with identity element 1 is called local if the set I  
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of its non-unit elements is an ideal. Then R/I is a (skew) field 

and also either x or 1-x is a unit. 

    Let F be a field. Let η^{m}=0 for η∉F. Consider  

A:=F(η)=F+Fη+Fη²+⋯+Fη^{m-1}  with componentwise 

addition and multiplication modulo η^{m}. Then A is a 

(unital, commutative and associative) local ring with the 

maximal ideal I= Aη of non-units. Also, the local ring A can 

be considered as plural F-algebra of order m with a basis 

{1,η,η²,⋯,,η^{m-1}}. Note that the algebra can be seen as 

quotient ring of the polynomial ring F[η] by the principal 

ideal <η^{m}>. For more detailed information about quotient 

rings, it can be seen to [16]. If we choose the field of real 

numbers instead of F then we have the real plural algebra of 

order m (see [8, Def. 1.1]) 

    It is clear that an element x of A is of the form 

x=a₀ +a₁ η+a₂ η²+⋯+a_{m-1}η^{m-1} where a_{i}∈F for 

0≤i≤m-1. 

    Now we can consecutively state the following two results, 

analogues of Proposition 1.3 and 1.5 given in [8], without 

proof. 

 

Proposition 1.  

An element x=a₀ +a₁ η+a₂ η²+⋯+a_{m-1}η^{m-1}∈ A is a 

unit if and only if a₀ ≠0. 

 

Proposition 2. 

A is a local ring with maximal ideal ηA. The subsets η^{j}A, 

1≤j≤m, are all ideals in A. 

 

    From [2] we recall the following: 

 

Definition 3.  

Let M=(P,L,∈,∼) consist of an incidence structure 

(P,L,∈)(points, lines, incidence) and an equivalence relation 

`∼' (neighbour relation) on P and on L. Then M is called a 

projective Klingenberg plane (PK-plane), if it satisfies the 

following axioms: 

(PK1) If  P,Q  are non-neighbour points, then there is a 

unique line PQ through P and Q. 

(PK2) If g,h  are non-neighbour lines, then there is a unique 

point  g∧h on both g and h. 

(PK3) There is a projective plane M^{∗}=(P^{∗},L^{∗},∈) 

and an incidence structure epimorphism Ψ:M→M^{∗}, such 

that the conditions 

Ψ(P)=Ψ(Q)⇔P∼Q,Ψ(g)=Ψ(h)⇔g∼h 

hold for all P,Q∈P, g,h∈L. 

 

    Let R be a local ring. Then M(R)=(P,L,∈,∼) is the 
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incidence structure with neighbour relation defined as 

follows: 

 

P = {(x,y,1)|x,y∈R}∪{(1,y,z)|y∈R,z∈I}∪{(w,1,z)|w,z∈I}, 

L = {[m,1,k]|m,k∈R}∪{[1,n,p]|p∈R,n∈I }∪{[q,n,1]|q,n∈I }, 

 

 [m,1,k]  = {(x,xm+k,1) | x∈R }∪{(1,zk+m,z) | z∈I }, 

 [1,n,p]  = {(yn+p,y,1) | y∈R }∪{(zp+n,1,z) | z∈I }, 

 [q,n,1]  = {(1,y,yn+q) | y∈R }∪{(w,1,wq+n) | w∈I }. 

 

 P  = (x₁ ,x₂ ,x₃ )∼(y₁ ,y₂ ,y₃ ) = Q ⇔ 

x_{i}-y_{i}∈I(i=1,2,3)), ∀P,Q∈P; 

 g  = [x₁ ,x₂ ,x₃ ]∼[y₁ ,y₂ ,y₃ ] = h ⇔ 

x_{i}-y_{i}∈I(i=1,2,3)), ∀g,h∈L. 

 

From [2] we recall the following theorem. 

 

Theorem 4. 

M(R) is a PK-plane, and each desarguesian PK-plane is 

isomorphic to some M(R). 

 

    For more detailed information about desarguesian 

PK-plane, it can be seen to the papers of [1, 10]. By Theorem 

4 it is obvious that M(A) is a PK-plane. 

    An n-tuple (n≥3) of pairwise non-neighbour points is 

called an (ordered) n-gon if no three of its elements are on 

neighbour lines. 

    Baker et. al., [2], use O=(0,0,1), U=(1,0,0), V=(0,1,0), 

E=(1,1,1) as a coordinatization 4-gon of a PK-plane. 

    Finally, we give the definition of addition and 

multiplication of points on the line OU of  M(A) in the sense 

of [4]. 

 

Definition 5.  

Let A and B be non-neighbour points on the line OU=[0,1,0] 

of  M(A). Then 

i) A+B is defined as the intersection point of the lines LV 

and OU where L=KU∧BS, K=AV∧OS, S=(1,1,0). 

ii) A⋅B is defined as the intersection point of the lines VN 

and OU where N=AS∧OM, M=BV∧IS, S=(1,1,0), I=(1,0,1). 

 

    In the next section, we will give the main results. 

III. THE MAIN RESULTS  

   We immediately start with giving the following 

proposition which is analogue of a result given in [4]. The 

calculations in the proof of the proposition are based on 

similar calculations used in the coordinatization procedure 

for general PK-planes due to Keppens [11, 12]. 

 

Proposition 6.  

The addition and multiplication of two non-neighbour points 

A and B on the line OU in M(A) as defined geometrically in 

Definition 5 can be calculated algebraically using the ring 

operations in the coordinatizing plural F-algebra. 

 

Proof. Let A=(a,0,1) and B=(b,0,1) be non-neighbour points 

on the line OU=[0,1,0] where 

a=a₀ +a₁ η+a₂ η²+⋯+a_{m-1}η^{m-1}∈A and 

b=b₀ +b₁ η+b₂ η²+⋯+b_{m-1}η^{m-1}∈A. 

i) For the lines AV=[1,0,a] and OS=[1,1,0], we have the 

intersection point as K=(a,a,1). Also, for the lines 

BS=[1,1,-b] and KU=[0,1,a], we get the intersection point as 

L=(a+b,a,1). Finally 

 

 A+B = LV∧OU 

             = [1,0,a+b]∧OU 

             = (a+b,0,1) 

 

is obtained.  

If B=(1,0,z), that is, B∼U, then for the lines AV=[1,0,a] 

and OS=[1,1,0], we have the intersection point as K=(a,a,1). 

Also, for the lines BS=[z,-z,1] and KU=[0,1,a] we get the 

intersection point as L=(1,z⋅(1+a⋅z)⁻ ¹⋅a,z⋅(1+a⋅z)⁻ ¹). 

Finally, 

 

 A+B = LV∧OU 

          = [z⋅(1+a⋅z)⁻ ¹,0,1]∧[0,1,0] 

          = (1,0,z⋅(1+a⋅z)⁻ ¹) 

          = (1,0,z′)=B′ 

 

is obtained. 

ii) Since A,B≁O we know that a and b are units of A. For 

the lines IS=[1,1,-1] and BV=[1,0,b] we have the intersection 

point as M=(b,b-1,1). Also, for the lines AS=[1,1,-a] and 

OM=[1-b⁻ ¹,1,0] we get the intersection point as 

N=(a⋅b,(a⋅b)-a,1). Finally, 

 

 A⋅B = VN∧OU 

            = [1,0,a⋅b]∧[0,1,0] 

            = (a⋅b,0,1) 

 

is obtained. 

If B=(1,0,z), that is, B∼U, then for the lines IS=[1,1,-1] and 

BV=[z,0,1] we have the intersection point as M=(1,1-z,z). 

Also, for the lines AS=[1,1,-a] and OM=[1-z,1,0] we get the 

intersection point as N=(1,1-z,z⋅a⁻ ¹). Finally, 

 

 A⋅B = VN∧OU 

            = [z⋅a⁻ ¹,0,1]∧[0,1,0] 

            = (1,0,z⋅a⁻ ¹) 

            = (1,0,z’’) 

            = B′′ 

 

is obtained. 

 

    As a corollary of Proposition 6, we can state the 

following: 

 

Corollary 7.  

The point S=(1,1,0) in Definition 5 may be replaced by any 

point S on UV with S≁U, S≁V. Hence, the definition of the 

addition and multiplication of points on the line OU is 

independent of the choice of the point S. 

 

Proof. If S ′  is an arbitrary point on the line UV 

non-neighbour to V then, let S′=(1,s,0)  
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where s=s₀ +s₁ η+s₂ η²+⋯+s_{m-1}η^{m-1}∈A is a unit 

since S′≁U. By similar calculations we replace S by S′ in 

the proof of Proposition 6. Then,  

i) For the lines AV=[1,0,a] and OS′=[s,1,0] we have the 

intersection point as K=(a,a⋅s,1). Also, for the lines BS′

=[s,1,-(b⋅s)] and KU=[0,1,a⋅s], we get the intersection point 

as L=(a+b,a⋅s,1). Finally, 

 

 A+B = LV∧OU 

             = [1,0,a+b]∧[0,1,0] 

             = (a+b,0,1) 

 

is obtained. 

If B=(1,0,z), that is, B∼U, then for the lines AV=[1,0,a] 

and OS ′ = [s,1,0], we have the intersection point as 

K=(a,a⋅s,1). Also, for the lines BS ′ =[z,-(s⁻ ¹⋅z),1] and 

KU=[0,1,a⋅s], we get the intersection point as 

L=(1,z⋅(1+a⋅z)⁻ ¹(a⋅s),z⋅(1+a⋅z)⁻ ¹). Finally, 

 

 A+B  = LV∧OU 

           = [z⋅(1+a⋅z)⁻ ¹,0,1]∧[0,1,0] 

           = (1,0,z⋅(1+a⋅z)⁻ ¹) 

           = (1,0,z′) 

           = B′ 

 

is obtained.  

ii) For the lines IS=[s,1,-s] and BV=[1,0,b] we have the 

intersection point as M=(b,(b⋅s)-s,1). Also, for the lines 

AS=[s,1,-(a⋅s)] and OM=[s-(b⁻ ¹⋅s),1,0] where b∈A is a unit 

since B≁O, we get the intersection point as 

N=(a⋅b,(a⋅b)⋅s-a⋅s,1). Finally 

 

 A⋅B = VN∧OU 

            = [1,0,a⋅b]∧[0,1,0] 

            = (a⋅b,0,1) 

 

is obtained. 

If B=(1,0,z), that is, B∼U, then for the lines IS=[s,1,-s] and 

BV=[z,0,1], we have the intersection point as M=(1,s-(z⋅s),z). 

Also for the lines AS=[s,1,-(a⋅s)] and OM=[s-(z⋅s),1,0], we 

get the intersection point as N=(1,s-(z⋅s),z⋅a⁻ ¹) where a∈A is 

a unit since A≁O. Finally, 

 

 A⋅B = VN∧OU 

            = [z⋅a⁻ ¹,0,1]∧[0,1,0] 

            = (1,0,z⋅a⁻ ¹) 

            = (1,0,z′′) 

            = B′′ 

 

is obtained. 

 

     

As an immediate consequence of Proposition 6, addition 

and multiplication of points on the line OU corresponds to 

addition and multiplication of elements of the local ring A of 

plural numbers over a field. This means that (OU,+,⋅) itself 

has the structure of a local ring. The situation generalizes the 

one valid in an ordinary desarguesian (affine or projective) 

plane over a field F where the points on a line can also be 

added and multiplicated in such a way that one obtains a field 

isomorphic to F (see [3, Chapter 3]). Also, in [4], a similar 

result was obtained for PK-planes over a local ring of dual 

numbers (over a field or even over a quaternion skewfield). 
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