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 

Abstract—The conventional single degree-of-freedom (dof) 

vibration absorber is a widely used device for suppressing the 

(vertical or horizontal) flexural-vibration responses of a 

structure induced by dynamic loads. Thus, the relating 

information is abundant. However, because the device for 

suppressing the torsional-vibration responses of a structure is 

rare, the relating literature is limited. The objective of this 

paper is to determine the optimal parameters for a two-dof 

vibration absorber such that the torsional-vibration responses 

of a structure due to dynamic loads can be effectively 

suppressed. To this end, the equations of motion for a two-dof 

vibration absorber and the generalized main vibration system 

corresponding to a certain predominant mode shape of the 

beam will be firstly derived using the theory of Lagrange's 

equations. Then, based on the dynamic magnification factor for 

the rotational dof of the last generalized main vibration system, 

the optimal parameters of the aforementioned two-dof vibration 

absorber will be determined. Numerical investigations 

concerning the use of two-dof vibration absorber for 

suppressing the rotational-vibration responses of the 

generalized main vibration system due to dynamic loads will 

then be conducted. Finally, based on the mode superposition 

principle, the foregoing technique will be extended to suppress 

the torsional-vibration responses of a uniform beam subjected 

to an eccentric moving force. Because, in addition to the 

torsional-vibration responses, the presented two-dof vibration 

absorber can also suppress the flexural-vibration responses of 

the structure to some degree, its functions should be greater 

than those of the conventional single-dof absorber. 

 
Index Terms—Dynamic magnification factor, Dynamic loads, 

Single degree-of-freedom vibration absorber, Torsional 

vibration, Two degree-of-freedom vibration absorber.  

 

I. INTRODUCTION 

  To suppress the structural vibration responses induced 

by dynamic loads, the dynamic characteristics of vibration 

absorbers have been investigated by many researchers [1-12]. 

For example, Brock and Mo [1], Warburton [2,3], Hartog [4], 

Ormondroyd and Hartog [5] have investigated the 

optimization of vibration absorber for suppressing the 

(vertical and horizontal) flexural-vibration responses of the 

single degree-of-freedom (dof) spring-mass main system, 

where the absorber was the type of one-dof 

spring-damper-mass system and directly attached to the main 

system. It is well known that any real structure can be 

reasonably represented as a multiple dof system. However, if 
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the contribution of a particular mode to its dynamic responses 

is much more significant than those of the other modes, then 

the last multiple dof system can be simplified as an one-dof 

spring-mass main system. Therefore, in spite of that the 

optimal absorber parameters presented in references [1-5] are 

for the case of one-dof spring-mass main system, the last 

absorber parameters can also be used for the case of multiple 

dof structure according to its simplified one-dof spring-mass 

main system. Based on the last concept, Joshi and Jangid [6], 

Kwon et al. [7], Yau and Yang [8], Rana and Soong [9] and 

Rice [10] have used the one-dof vibration absorber for 

suppressing the flexural-vibration responses of the multiple 

dof structures subjected to earthquake loadings and moving 

loads. Besides, Sun et al. [11] and Xue et al. [12] have used a 

tuned liquid column damper for suppressing the torsional 

motions of structures. From the review of the 

above-mentioned literature, one finds that the reports [1-10] 

concerning the use of one-dof vibration absorber for 

suppressing the (vertical or horizontal) flexural-vibration 

responses of structures are plenty, however, those for 

suppressing the torsional ones are limited [11-12]. Because 

the information concerning the use of two-dof vibration 

absorber (rather than tuned liquid column damper presented 

in [11] and [12]) for suppressing torsional-vibration 

responses of structures (cf. Figure 1) is not found so far, it is 

studied in this paper. 

Firstly, by means of the Lagrange’s equations, the 

equations of motion of the generalized main vibration system 

corresponding to a certain predominant mode shape of the 

beam and the attached two-dof vibration absorber (cf. Figure 

2) are derived. Then, the optimal parameters of a two-dof 

vibration absorber for suppressing the rotational-vibration 

responses of the generalized main vibration system due to an 

external harmonic torque are determined. Next, based on the 

modal data obtained from the mode superposition 

methodology and the orthogonal property between the normal 

mode shapes of the multiple dof beam, the technique for 

determining the optimal absorber parameters associated with 

any order of vibration mode of the beam is presented. Finally, 

the last optimal absorber parameters are used for suppressing 

the torsional-vibration responses of a pinned-pinned beam 

subjected to an eccentric moving force (cf. Figure 5). 

Numerical results show that the presented optimal parameters 

for the two-dof vibration absorber do provide a technique for 

effectively suppressing the torsional-vibration responses of 

structures. Due to the fact that the presented absorber not only 

suppresses the torsional-vibration responses of structures but 
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also the (vertical and harizontal) flexural-vibration ones, the 

presented two-dof vibration absorber should be better than 

the conventional one-dof absorber.  
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Figure 1 Flexural vibration and torsional vibration of a beam. 
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Figure 2 (a) The generalized main vibration system 

corresponding to certain predominant mode shape of the 

beam and the associated generalized parameters, and (b) 

mathematical model of the two-dof vibration absorber. 

II. EQUATIONS OF MOTION OF THE GENERALIZED MAIN 

VIBRATION SYSTEM AND THE TWO-DOF VIBRATION ABSORBER 

In order to suppress the torsional-vibration responses of 

the beam shown in Figure 1, a two-dof vibration absorber is 

installed to Section A of the beam. Figure 2(a) shows the 

generalized main vibration system corresponding to certain 

predominant mode shape of the beam and the associated 

generalized parameters, and the attached two-dof vibration 

absorber. In the figure, ym , xJ  and zJ  are the mass and 

masses moment of inertia about the x  and z  axes of the 

generalized main vibration system, respectively; yk , xk  and 

zk  are the translational ( y ) spring constant and rotational 

spring constants about the x  and z  axes of the generalized 

main vibration system, respectively; yu , x  and z  are the 

instantaneous translational ( y ) displacement and rotational 

angles about the x  and z  axes of the generalized main 

vibration system, respectively; au  and a  are instantaneous 

translational ( y ) displacement and rotational angle about the 

x  axis of the absorber, while d  is the distance between the 

two springs and the lumped mass am  (or ym ). In addition, 

P  and Q  are the contact points between the generalized 

main vibration system and the absorber, while ak , ac , am  

and aJ  are the spring constant, damping coefficient, mass 

and mass moment of inertia of the absorber, respectively. It is 

evident that the motions of a two-dof vibration absorber are 

limited to the yz  plane and the rotational motions of the 

generalized main vibration system about z  axis have nothing 

to do with the two-dof vibration absorber. For this reason, the 

rotational motions of the generalized main vibration system 

about z  axis are neglected in the following formulas. 

The translational ( y ) displacements of the contact points, 

P  and Q , are given by 

xyP duu                  (1) 

xyQ duu                  (2) 

The total kinetic energy (T ) and potential energy (V ) of the 

generalized main vibration system together with the two-dof 

vibration absorber are: 
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The generalized forces of the generalized main vibration 

system and the two-dof vibration absorber in the translational 

( y ) and rotational ( x ) directions are respectively given by 

yayau fuucF
y

 )(2              (5) 

xaxa fdcF
x    )(2 2             (6) 

aayau fuucF
a

 )(2              (7) 

aaxa fdcF
a    )(2 2             (8) 

where yf  and xf  are the external force and torque applied 

on the generalized main vibration system, while af  and af  

are those applied on the absorber.  

Substituting Equations (1)-(8) into the following Lagrange’s 

equations [13] 
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one obtains 
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yaayayyaayayy fucucukukukum   2222   (10) 
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Writing Equations (10)-(13) in matrix form yields 
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Equation (14) is the equation of motion of the generalized 

main vibration system and the two-dof vibration absorber. In 

addition, Equations (10) and (12) represent the equations of 

motion of the generalized main vibration system and the 

two-dof vibration absorber in the translational ( y ) direction, 

while Equations (11) and (13) represent those in the rotational 

( x ) direction.  

In order to calculate the dynamic responses of a beam 

carrying a two-dof vibration absorber subjected to an 

eccentric moving force by conventional finite element 

method, the property matrices of a two-dof vibration absorber 

are also presented in the following. 

By setting 0 xyxy kkJm   in Equations (19)-(21), 

one obtains 
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where ][ am , ][ ac  and ][ ak  given by Equations (22)-(24) are, 

respectively, the mass, damping and stiffness matrices of the 

two-dof vibration absorber. 

It is noted that the mass moment of inertia of the two-dof 

vibration absorber ( aJ ) has close relationship with the 

magnitude and size of the lumped mass of the absorber. If the 

magnitude and size for the lumped mass of the absorber are 

am  and a 
b 

c , respectively (see Figure 2(b)), then its 

mass moment of inertia about the x  axis is given by [14] 

)(
12

1 22

baaa mJ                (25) 

where a , b  and c  are the length, height and width of the 

lumped mass am , respectively.  

III. DYNAMIC MAGNIFICATION FACTOR OF THE 

GENERALIZED MAIN VIBRATION SYSTEM 

Because the aim of this section is to find the optimal 

absorber parameters for suppressing the rotational motions of 

the generalized main vibration system, only Equations (11) 

and (13) will be discussed hereafter. It is worthy of mention 

that, if the aim is to suppress the translational ( y ) responses 

of the generalized main vibration system, one must design the 

absorber according to Equations (10) and (12). 

If the generalized main vibration system is subjected to a 

harmonic torque in the rotational ( x ) direction (cf. Figure 

2(a)) and the external torque applied on the two-dof vibration 

absorber is zero, one has 
tj

xx eff 

                   (26) 

0af                   (27) 

where xf  and   represent the amplitude and forcing 

frequency of the harmonic torque xf , respectively. 

In such a case, the steady-state rotational angles of the 

generalized main vibration system and the absorber, x  and 

a , take the form 

tj

xx e                    (28) 

tj

aa e                    (29)  

where x  and a  are the amplitudes of x  and a , 

respectively, and 1j . 

Time derivatives of Equations (28) and (29) give 

xx j  , xx  2             (30) 

aa j  , aa  2             (31)  
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Substituting Equations (26)-(31) into Equations (11) and (13) 

gives 

xaaa

xaaxx

fdkdcj

dcjdkkJ













 )22(                        

)22( 

22

222

    (32) 

0)22(            

)22(

222

22





aaaa

xaa

Jdkdcj

dcjdk




    (33) 

Because the aim of this paper is to suppress the 

rotational-vibration responses ( x ) of the generalized main 

vibration system to the possible extent, only the response 

amplitude x  is interested here. Solving the last two 

equations for x , one has 
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Because x  is a complex number, its magnitude is 
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Therefore, the dynamic magnification factor for 

rotational-vibration responses ( x ) of the generalized main 

vibration system is 
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IV. NON-DIMENSIONAL OPTIMAL FREQUENCY RATIO AND 

DAMPING RATIO OF THE TWO-DOF VIBRATION ABSORBER 

Multiplying the numerator and denominator inside the 

square root of Equation (37) with 
2)( xax kJJ  , respectively, 

yields 
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In the last equations, the damping ratio ( ), frequency ratios 

( f  and  ) and the ratio for mass moment of inertia (  ) are 

defined in the following. 
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From Equation (39), one may obtain the optimal frequency 

and damping ratios of the two-dof vibration absorber [4]: 


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For the detailed procedures of determining the last two 

optimal parameters of the two-dof vibration absorber, please 

refer to reference [4]. 

V. OPTIMAL PARAMETERS FOR THE TWO-DOF VIBRATION 

ABSORBER ATTACHED TO A BEAM 

The non-dimensional optimal absorber parameters presented 

in the last section are for the case of the absorber to be 

attached to a generalized main vibration system, as shown in 

Figure 2(a). If the absorber is attached to a multiple dof beam 

(cf. Figure 5), the non-dimensional optimal parameters for the 

absorber may be determined by the technique presented in 

this section. Once the non-dimensional optimal parameters 

for the two-dof vibration absorber are obtained, the 

corresponding dimensional optimal ones, such as spring 

constant ak  and damping coefficient ac  of the two-dof 

vibration absorber, can be calculated. 

A. Non-dimensional optimal parameters for the two-dof 

vibration absorber attached to a beam 

The equation of motion of the undamped beam without 

carrying absorber takes the form [15] 

111 )}({)}({][)}({][   nnnnnnn tFtqKtqM     (48) 

where ][M  and ][K  are respectively the effective overall 

mass and stiffness matrices, )}({ tq , )}({ tq  and )}({ tq  are 

respectively the acceleration, velocity and displacement 

vectors, )}({ tF  is the external force vector and n  is the 

effective total degree of freedom of the beam. 

By applying the theory of mode superposition method and the 

orthogonal property of the normal mode shapes of the beam 

to Equation (48), the n  coupled simultaneous differential 

equations can be reduced to the following uncoupled ones 

[13] 
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where rm~ , rk
~

 and rf
~

 are respectively the generalized mass, 

generalized stiffness and generalized force for the generalized 

main vibration system associated with the r-th vibration 

mode of the beam, r  and r  are respectively the r-th 
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generalized acceleration and displacement, while }{ r  is the 

r-th normal mode shape. 

For a beam subjected to an eccentric moving force, as shown 

in Figure 3(a), the contribution to the torsional-vibration 

responses of the beam from its first torsional-vibration mode 

(i.e., pnr  ) is the most significant, where pn  is the mode 

number for the first torsional-vibration mode of the beam. 

Therefore, one may design an optimal absorber according to 

the generalized mass and generalized stiffness of the 

generalized main vibration system associated with the th

pn  

vibration mode of the beam, 
pnm~  and 

pnk
~

. It is evident that 

the values of 
pnm~  and 

pnk
~

 may be obtained from Equation 

(49) with pnr  . If the mass moment of inertia of the 

absorber, aJ , is given, then the associate non-dimensional 

optimal parameters for the two-dof vibration absorber may be 

obtained from Equations (45)-(47).  

B. Dimensional optimal parameters for the two-dof 

vibration absorber attached to a beam 

The non-dimensional optimal parameters of the two-dof 

vibration absorber for suppressing the torsional-vibration 

responses of the beam are presented in the last section. They 

are found to be the functions of mass ratio xa JJ    and 

are given by 
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where the last two equations are obtained from Equations 

(42), (43), (46) and (47). 

From Equations (51) and (52), one obtains 
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2
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Equations (53) and (54) are the expressions for calculating 

the dimensional optimal spring constant ak  and damping 

coefficient ac  of the two-dof vibration absorber.  

VI. DYNAMIC RESPONSES OF A BEAM WITH AND WITHOUT 

CARRYING A TWO-DOF VIBRATION ABSORBER UNDERGOING 

AN ECCENTRIC MOVING FORCE 

If, at any instant of time t , the locus of the concentrated 

force P is not coincident with the centreline of the beam, then 

the last eccentric concentrated force P  (see Figure 3(a)) can 

be replaced by an equivalent concentrated force PP   

together with a moment ePM   (see Figure 3(b)). Where 

e  is the distance between the concentrated force P  and the 

centreline of the beam. In other words, if the locus of the 

concentrated force P  is coincident with the centreline of the 

beam, then 0e . Thus, PP   and 0M . The 

aforementioned concept has been investigated by Wu [16] 

and satisfactory results have been obtained.  

For a multiple-degree-of-freedom beam, its equation of 

motion is given by [15] 

)}({)}(]{[)}(]{[)}(]{[ tFtuKtuCtuM       (55) 

where ][M , ][C  and [K] are the overall mass, damping and 

stiffness matrices of the unconstrained beam, respectively, 

)}({ tu , })({ tu  and })({ tu  are the acceleration, velocity and 

displacement vectors of the entire structural system, 

respectively, and {F(t)} is the overall external force vector. 

For convenience, in this paper, a beam carrying any 

number of absorbers is called the loaded beam, while that 

carrying nothing is called the bare beam. 

A. Dynamic responses of a beam without carrying an 

absorber undergoing an eccentric moving force 

In Equation (55), the overall stiffness and mass matrices, 

][K  and ][M , of the bare beam can be obtained by 

assembling the elementary properties matrices of each beam 

element [17]. Because the beam studied herein is undamped, 

the overall damping matrix of the beam is a null matrix, i.e.,  

]0[][ C                   (56) 

Based on the conventional finite element method, if a 

beam is subjected to a concentrated force P  and moment 

M , all the nodal forces of the beam are equal to zero except 

those for the sth beam element on which the concentrated 

force P  and moment M  apply (see Figure 4). For this 

reason, the overall external force vector )}({ tF  in 

Equation (55) takes the form 

Tssssss tftftftftftf

tF
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                     (57) 

where )()( tf s

i  (i = 1 to 6) are the equivalent nodal forces of 

the sth beam element on which the moving force P  and 

moment M  apply and are given by [16] 

T
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                     (58) 

where iN  ( i =1 to 6) are the shape functions of the beam 

element given by [15] 
32

1 231  N               (59) 

bLN )2( 32

2                (60) 

13N                  (61) 

32

4 23  N                (62) 

bLN )( 32

5                 (63) 

6N                   (64) 

bLx                   (65) 

where bL  and x  respectively represent the length of the 

beam element and the distance between the position of the 
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concentrated force P  (or moment M ) and the left-end of the 

beam element (see Figure 4). 

It is worthy of mention that, in Equation (57), the 

equivalent nodal forces, )()( tf s

i  (i = 1 to 6), are the th

is  (i = 1 

to 6) coefficients of )}({ tF , respectively, where is  (i = 1 to 

6) are the numberings for the six degrees of freedom of the sth 

beam element on which the moving force (or moment) 

applies.  

If the concentrated force P  (or moment M ) moves, with 

a constant velocity V, from the left-end to the right-end of the 

beam, the position of the concentrated force P  (or moment 

M ) at any instant of time t is given by 

Vttxp )(                  (66) 

Thus, the numbering for the beam element on which the 

concentrated force P  (or moment M ) applies at time t is 

(s Integer part of 1)
)(


b

p

L

tx
         (67) 

In such a case, the instantaneous overall external force vector 

)}({ tF , as shown in Equation (55), can be determined by 

using Equations (57)-(67). It is noted that the local x 

coordinate of the moving concentrated force P  (or moment 

M ), as shown in Equation (65), is a function of the global 

coordinate )(tx p , i.e., 

b

bp

b L

Lstx

L

x )1()( 
            (68) 

Imposing the prescribed boundary conditions of the beam to 

Equation (55) gives the equation of motion of the constrained 

beam, i.e., 

)}({)}(]{[)}(]{[)}(]{[ tFtuKtuCtuM      (69) 

where ][M , ][C  and ][K  are the effective overall mass, 

damping and stiffness matrices, respectively, and )}({ tF  is 

the effective overall external force vector of the constrained 

beam. 

Finally, the dynamic responses of the bare beam 

undergoing an eccentric moving force can be determined by 

solving the equation of motion of the constrained beam, 

Equation (69), by using Newmark direct integration method 

[18].  

B. Dynamic responses of a beam carrying a two-dof 

vibration absorber undergoing an eccentric moving force 

The formulations of the last section are available for 

calculating the dynamic responses of the bare beam 

undergoing an eccentric moving force. To calculate the 

dynamic responses of the loaded beam (see Figure 5) 

undergoing an eccentric moving force, the overall mass, 

damping and stiffness matrices, ][M , ][C  and ][K , of the 

last section must be replaced by  

44)2()2( ][][]
~

[   annnn mMM          (70) 

44)2()2( ][][]
~

[   annnn cCC           (71) 

44)2()2( ][][]
~

[   annnn kKK           (72) 

where n  represents the total degree of freedom of the bare 

beam, while ][ am , ][ ac  and ][ ak  represent the stiffness, 

damping and mass matrices of the two-dof vibration absorber 

given by Equations (22), (23) and (24), respectively. From the 

last equations, one sees that the total degree of freedom of the 

bare beam carrying a two-dof vibration absorber is two more 

than that of the bare beam without carrying an absorber. It is 

noted that the assembly of the element property matrices of 

the absorber, ][ am , ][ ac  and ][ ak , and the mass, damping 

and stiffness matrices, ][M , ][C  and ][K  of the bare beam 

must be conducted according to the numberings for the 

degrees-of-freedom of the absorber. The effective overall 

property matrices of the constrained beam carrying an 

absorber, ][M , ][C  and ][K , can be obtained from the 

overall matrices ]
~

[M , ]
~

[C  and ]
~

[K  by imposing the 

prescribed boundary conditions. 

Now, one can determine the dynamic responses of the 

beam carrying a two-dof vibration absorber undergoing an 

eccentric moving force by using the similar procedures of the 

last subsection 
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(a)         (b) 

Figure 3 (a) A pinned-pinned beam subjected to an eccentric 

moving force, with magnitude P  and eccentricity e , can be 

replaced by (b) the same beam subjected to an equivalent 

force PP   together with an equivalent moment ePM   

moving along the centerline of the beam. 
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Figure 4 Equivalent nodal forces 

)(s

if ( i =1 to 6) of the sth 

beam element due to a concentrated force P  and a 

concentrated moment M . 
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Figure 5 A pinned-pinned beam carrying a two-dof vibration 

absorber subjected to an eccentric moving force, with 

magnitude P  and eccentricity e , moving from the left end 

to the right end of the beam with a constant speed V . 

VII. NUMERICAL RESULTS AND DISCUSSIONS 

To confirm the reliability of the presented theory and the 

developed computer programs, numerical investigations on 

the optimal parameters of the two-dof vibration absorber for 

suppressing the rotational-vibration responses of a 

generalized main vibration system due to a harmonic torque 

are conducted first. Then, the last optimal parameters of the 

two-dof vibration absorber are applied to the vibration 

reduction of the torsional-vibration responses of a uniform 

undamped pinned-pinned beam induced by an eccentric 

moving force. 

A. Influence of frequency ratio 
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Figure 6 Influence of frequency ratio ( f ) of the two-dof 

vibration absorber on the dynamic magnification factor 

stx   of the generalized main vibration system (see Figure 

2(a)). 

The example studied here is a generalized main vibration 

system carrying a two-dof vibration absorber, as shown in 

Figure 2(a). Based on the ratio for mass moment of inertia 

 = xa JJ  = 0.1 together with the optimal damping ratio 

 = opt = 0.1846 and frequency ratios f = 0.5, 0.7, 0.9091, 

1.1 and 1.3, the curves for the dynamic magnification factor 

of the rotational angles ( x ) of the generalized main vibration 

system, 
stx  , versus frequency ratio, 

xx Jk  , 

are obtained from Equation (39) and shown in Figure 6. It is 

noted that the optimal damping ratio ( = opt = 0.1846) and 

optimal frequency ratio ( f = optf = 0.9091) are obtained from 

Equations (47) and (46), respectively. In Figure 6, the solid 

curves with circles, crosses, triangles, rectangles and stars, 

, +, ,  and , are for the cases 

with frequency ratios of the absorber f = 0.5, 0.7, 0.9091, 

1.1 and 1.3, respectively. It is evident that, among the last five 

curves, the smallest maximum dynamic magnification factor 

occurs when f = optf = 0.9091. 

B. Influence of damping ratio 
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Figure 7 Influence of damping ratio (  ) of the two-dof 

vibration absorber on the dynamic magnification factor 

stx   of the generalized main vibration system (see Figure 

2(a)). 

 

All the parameters for the case studied in this subsection 

are exactly the same as those of the last subsection except that 

the frequency ratio of the two-dof vibration absorber is 

f = optf = 0.9091 and the damping ratios are  = 0.14, 0.16, 

0.1846, 0.20 and 0.22. Clearly, f = optf = 0.9091 and 

 = opt = 0.1846 are the optimal parameters of the two-dof 

vibration absorber obtained from Equations (46) and (47), 

respectively. Figure 7 shows the curves for dynamic 

magnification factor of the generalized main vibration 

system, stx  , versus frequency ratio, 
xx Jk  . 

In which, the solid curves with circles, crosses, triangles, 
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rectangles and stars, , +,  ,  and 

, are for the cases with damping ratios  = 0.14, 0.16, 

0.1846, 0.20 and 0.22, respectively. From the figure, one 

finds that, among the curves, the smallest maximum dynamic 

magnification factor occurs when  = opt = 0.1846. 

From the numerical results of this subsection and the last 

one, one sees that the vibration-reduction efficiency of the 

two-dof vibration absorber will be significantly increased if 

the frequency ratio and damping ratio of the two-dof 

vibration absorber approach their optimal values, 

respectively. Therefore, one believes that the presented 

optimal parameters of the two-dof vibration absorber do 

provide an effective technique for suppressing the 

rotational-vibration responses of the generalized main 

vibration system.  

C. Influence of the ratio for mass moment of inertia 

Table 1 Optimal frequency ratio and damping ratio of the 

two-dof vibration absorber corresponding to xa JJ   = 

0.1, 0.2, 0.3, 0.4 and 0.5. 

Ratios for mass 

moment of inertia 

xa JJ    

Optimal 

frequency 

ratios optf  

Optimal damping 

ratios opt  

0.1 0.9091 0.1846 

0.2 0.8333 0.2500 

0.3 0.7692 0.2942 

0.4 0.7143 0.3273 

0.5 0.6667 0.3536 
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Figure 8 Influence of the ratio for mass moment of inertia 

(  ) of the two-dof vibration absorber on the dynamic 

magnification factor stx   of the generalized main 

vibration system (see Figure 2(a)). 

The differences between the current example and the last 

one are that the ratios for mass moment of inertia are 

 = xa JJ  = 0.1, 0.2, 0.3, 0.4 and 0.5. Besides, the optimal 

frequency ratio and optimal damping ratio of the two-dof 

vibration absorber corresponding to each ratio for mass 

moment of inertia ( ) are listed in Table 1. In the table, the 

optimal frequency ratio and damping ratio listed in second 

and third columns are calculated using the ratios for mass 

moment of inertia listed in the first column and Equations 

(46) and (47), respectively. Figure 8 shows the curves for 

dynamic magnification factor of the generalized main 

vibration system, 
stx  , versus frequency ratio, 

xx Jk  . In the figure, the solid curves with circles, 

crosses, triangles, rectangles and stars, , +, 

,  and , are for the cases with  = 0.1, 

0.2, 0.3, 0.4 and 0.5, respectively. From the figure, it is seen 

that the larger the ratio for mass moment of inertia, the better 

the vibration-reduction efficiency of the two-dof vibration 

absorber. This is a reasonable result because the two-dof 

vibration absorber can dissipate more energy if the mass 

moment of inertia of the absorber is increased. 

D. Design of a two-dof vibration absorber for suppressing 

the torsional-vibration responses of a beam due to an 

eccentric moving force 

To show the applicability of the presented theory, the 

optimal parameters of a two-dof vibration absorber for 

suppressing the torsional-vibration responses of a 

pinned-pinned beam subjected to an eccentric moving force, 

with magnitude P = 49 N and eccentricity e =0.175 m, 

moving from the left-end to the right-end of the beam (see 

Figures 3(a) and 5) with a constant speed V , are investigated. 

The beam, composed of 13 nodes and 12 identical beam 

elements, is made of steel with mass density   = 7820 

kg/m3, Young’s modulus E = 206.8 GN/m2, total length L = 4 

m and cross sectional area A = 0.35 m 0.03 m. Note that the 

two-dof vibration absorber is installed to the central point of 

the beam (i.e., the crest of the mode shape corresponding to 

the first torsional-vibration mode of the beam). 

For a pinned-pinned beam subjected to an eccentric 

moving force, the contribution to the torsional-vibration 

responses of the beam from its first torsional-vibration mode 

is the most significant. Therefore, this section will design an 

optimal two-dof vibration absorber according to the modal 

data of the first torsional-vibration mode of the beam. To this 

end, an absorber will be installed to the central point of the 

beam (i.e., the crest for the mode shape of the first 

torsional-vibration mode of the beam), as shown in Figure 5. 

According to Equations (49) and (50), the generalised mass 

1

~m  and generalised stiffness 1

~
k  associated with the first 

torsional-vibration mode of the beam are respectively given 

by 1

~m = 1.6696 kg.m2 and 1

~
k = 292993.0 Nm/rad. Thus, the 

mass moment of inertia and rotational spring constant for the 

generalized main vibration system, simplified from the 

pinned-pinned beam, are xJ = 1

~m = 1.6696 kg.m2 and 

xk = 1

~
k = 292993.0 Nm/rad. 

In general, the larger the mass moment of inertia of the 

two-dof vibration absorber, the better the vibration-reduction 

efficiency of the absorber. From Equation (25), one sees that 

the mass moment of inertia of the absorber aJ  is proportional 
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to the magnitude of its lumped mass am . However, the larger 

the lumped mass of the absorber, the larger the static 

deflection of the beam. Thus, the lumped mass of the 

absorber, am , cannot be too large. In this subsection, the 

lumped mass of the absorber is taken to be 5% of the total 

mass of the pinned-pinned beam, i.e., 

am = 05.0403.035.07820  = 16.422 kg. Thus, mass 

moment of inertia of the absorber is 

2908.0)3.035.0(422.16)( 22

12
122

12
1  baaa mJ  k

g.m2, where a  and b  are respectively the length and height 

of the lumped mass am  (cf. Equation (25) and Figure 2(b)). 

Based on the mass moment of inertia xJ = 1.6696 kg.m2, 

rotational spring constant xk = 292993.0 Nm/rad, mass 

moment of inertia of the absorber 2908.0aJ  kg.m2 and 

Equations (45)-(47), one obtains the ratio for mass moment of 

inertia  = xa JJ  =0.1741 and its corresponding 

non-dimensional optimal frequency ratio optf =0.8517 and 

non-dimensional optimal damping ratio opt =0.2358. If the 

distance 2ad  =0.175m, from Equations (53) and (54), 

the dimensional optimal spring constant and damping 

coefficient are found to be ak =604120.005 Nm/rad and 

ac =798.692 Nms/rad, respectively. 

The maximum torsional-vibration responses (i.e., 

rotational angles about the x  axis) of the central point of the 

pinned-pinned beam, with and without a two-dof vibration 

absorber, subjected to an eccentric moving force (with 

magnitude P 49 N, eccentricity e =0.175 m and constant 

speed V =1 to 50 m/sec) are shown in Figure 9. From the 

figure, one finds that the two-dof vibration absorber does 

suppress the torsional-vibration responses of the 

pinned-pinned beam subjected to an eccentric moving force. 

Figure 10 shows the maximum flexural-vibration responses 

( y ) of the central point of the pinned-pinned beam. From the 

figure, it can be found that the two-dof vibration absorber can 

also suppress the flexural -vibration responses ( y ) of the 

beam to some degree. 
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Figure 9 Maximum torsional-vibration responses ( x ) for the 

central point of the beam with and without a two-dof 

vibration absorber ( am =16.422 kg, 2908.0aJ kg.m2, 

d =0.175m, ak =604120.005 N/m and ac =798.692 Ns/m). 
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Figure 10 Maximum flexural-vibration responses ( y ) for the 

central point of the beam with and without a two-dof 

vibration absorber ( am =16.422 kg, 2908.0aJ kg.m2, 

d =0.175m, ak =604120.005 N/m and ac =798.692 Ns/m). 

VIII. CONCLUSION 

This paper presents a technique for determining the 

optimal parameters of a two-dof vibration absorber, so that 

the torsional-vibration responses of a structure induced by 

external dynamic loads can be effectively suppressed. 

Numerical results reveal that the presented optimal 

parameters of a two-dof vibration absorber can effectively 

suppress the torsional-vibration responses of structures. In 

view of the fact that the presented two-dof vibration absorber 

can also suppress the translational structural responses to 

some degree, the presented two-dof vibration absorber should 

be better than the conventional one-dof vibration absorber.  
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