Study of the Elementary Surgical Procedures and Instruments with Applications in the Micromechanics of Surgery

Andra-Maria Ciutac, Carmen-Gabriela Popa

6

Abstract - The theme of this research project is creating different methods suitable to analyze one's accuracy. Starting from theoretical studies of medical instruments and procedures, as well as studies of biomechanics of the tissue, we introduce a number of devices that can be used to monitor precision and accuracy. This paper presents and analyzes the most important surgical procedures, all in order to develop several mechanisms able to teach and evaluate aspiring surgeons and even specialists within their subject of work. Final models of the prototypes are also included, where the performance of the surgeon can be interpreted from the pressure they apply to the tissue and the precision of their incision.

Domains of value of the micro drive:

- specific geometry and the structure of the micromechanics of surgery
- angular displacement areas
- · linear displacement areas
- micro forces of the drive
- mechanical micro couples

Characteristics and mechanical parameters:

Spherical diameters: 0-250 mm

Linear areas: 0-5 mmAngular areas: 0-60

• Meridian plans

Micro forces areas: 0-100 cN

• Power: 0-100 W

• Speed: 0-100 cm per second

Speed area: 0-30 rpm

Pressure: 0-200Pa

I. INTRODUCTION

Over millenniums, people have understood the importance of surgery and medical practice, continuously developing it. Even if through major scientific and medical break-outs, the mortality rates of patients undergoing an invasive treatment have steadily decreased, it is often the art of the doctor that leads to a successful outcome (not only a sterile, disinfected surgical territory, but also the fine execution of each procedure). Therefore, we believe that by developing several mechanisms providing data regarding the manner a procedure is executed, surgeons can be more easily and accurately assessed in relation to the modern operating guidelines. These devices could only have a positive impact on the surgical domain, as they are meant to monitor and improve, when necessary, the abilities of specific users.

II. FUNCTIONS OF SURGICAL INSTRUMENTS

The functions of the basic surgical instruments vary, but can be classified within six categories, considering that an instrument might have several uses: [1]

- a) <u>Cutting and dissecting</u>: scalpels, scissors, dissector, ultrasonic cutting device, LASER, amputating knife, saws:
- b) <u>Grasping</u>: thump forceps, needle holders, organ clamps;
- c) <u>Hemostasis (mechanically or thermically stop a bleeding)</u>: homeostatic forceps, Argon bean coagulator, Deschamp Ligation needle and Payr sonda;
- d) <u>Retracting</u>: hand-held retractors, self-retraining retractors;
- e) <u>Closing/Tissue unifying</u>: needles, staplers, self-adhesive strips, surgical adhesives
- f) <u>Special</u>: Volkmann curette, round-ended probe, suction set, X-RAY, implants, prosthesis etc.

III. MEDICAL EQUIPMENTS AND PROCEDURES[2]

The scalpel is one of the most frequently used cutting and dissecting surgical instruments. It can be either conventional (reusable), disposable (with a plastic handle) or with a detachable blade. Depending on the dissected tissue, the blade can have various forms: thin-bladed, sharp-tipped, ducts or abscesses (Fig. 1).

Fig. 1 – Types of scalpel blade

There are two distinct methods in which the scalpel is used:
1) Long incision:

The scalpel has to be held like a fiddle bow, the handle being gripped horizontally between the thumb and the middle fingers with the dominant hand; the index finger offers

www.ijntr.org

precision and is kept above the handle. The ring and middle finger are placed towards the end of the handle (Fig. 2) The non-dominant hand puts the skin under tension by using the thumb and index finger.

Fig. 2 – Holding the scalped for a long incision

2) Short incision:

The scalpel has to be held like a pencil, while the cutting occurs mostly with the tip. The handle is being grabbed approx. 3 to 4 cm from where the blade meets the handle. (Fig. 3)

Fig. 3 – Holding the scalpel for short incision

Scissors are another important cutting device, that come as well in numerous forms, differing not only through the blades (straight, curved, angular), but also through the tips (blunt-blunt, blunt-sharp, sharp-sharp). Even if the blades and tips suggest the tissue intended to be cut, the same tehnique applies for all the surgical sccisors. The thumb and the fourth finger have to be placed each in a ring, while the index finger is placed distally, over the handle, in order to stabilize the scissors. It is relevant to mention that a similar procedure is applied when opperating with clamps. (Fig. 4)

Fig. 4 – Correctly holding scissors

The dissector is another cutting device that is long-handled and ring-ended. A unique caracteristic is that usually it is bended at an angle of 90° at its distal part (Fig. 5). However the tehnique that is being performed while using a dissector is similar to the scissors.

Fig. 5 – The distal part of a dissector

Needles and needle holders represent the most important system of tissue unifying, suturing. The most used needle holders are Mathieu and Hegar. Mathieu has curved shanks, a spring and different locking mechanisms (Fig. 6). It is hold like a pencil and should be compressed by the thumb and index finger. Hegar is similar to the homeostatic forceps, but having longer shanks and shorter jaws (Fig. 7). It is gripped similar to the scissors in the first phase and then rotated at an angle of 180° (Fig. 8).

Fig. 6 & 7 – Hegar (left) and Matthieu (right)needle holders

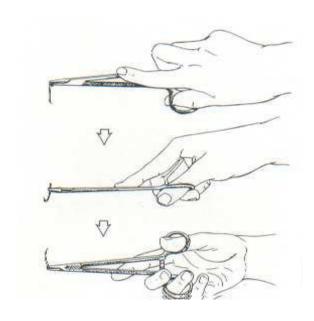


Fig. 8 – The method of using Hegar needle holders

There are many types of suture that can be performed depending on the tissue operated or the intended resitance. However there are two main types of suture:

- *Interrupted*: simple, vertical mattress, Allgower, horizontal mattress;
- *Continuous*: simple, locked, intracutaneus, purse-string;

The simple interruptd suture (Fig. 9) is usually performed on skin fascia and muscles. Its main principle is that after each knot is tied. Ideally the skin is undertaking an equal amount of tension with each suture. Even if it is time consimuing the docor has the guarantee that the suture will remain closed.

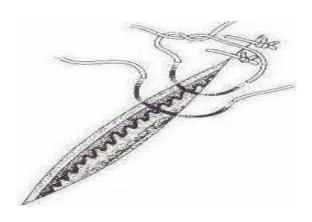


Fig. 9- The simple interrupted suture

The vertical mattress suture (Fig. 10) occurs in the deep layers of the skin and is called either Donati or Vertical U-shaped. It is performed on a vertical plane, perpendicular to the wound and consists of the deep suture in the subcutaneus layer and a superficial one on the surface of the skin, at the wound edge.

Fig. 10 – The vertical matress suture

The Allgower suture is a subcategory of vertical mattress suture, but differenteates itself by not coming out from the skin (Fig. 11).

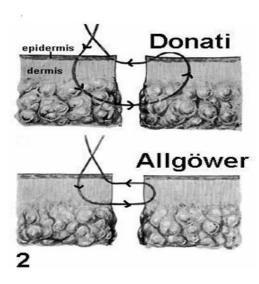


Fig. 11- Comparison between the Donati and Allgower suture

The horizontal mattress suture (Fig. 12) is normally used for a short skin wound. It is a double suture, in the same skin layer, made every one cm.

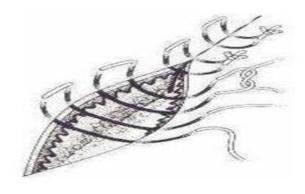


Fig . 12 – The horizontal mattress suture

The simple continuous suture (Fig. 13) can be used for multiple type of tissues such as the inner wall of organs, the stomach, the intestines, and the mucosa. It is extremly time-efficient as it only requires two knots, one at the beginning and one at the end. Moreover, surgeons do not worry about the tension applied as it distributes equally upon all the suture.

The locked continous suture (Fig. 14) is an improvement brought to the simple continous suture, as the extarnal locks allow for the wound tension to be quicly and accurately adjusted, but also prevent the sutures to loosen.

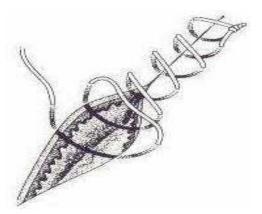


Fig. 13- The simple continuous suture

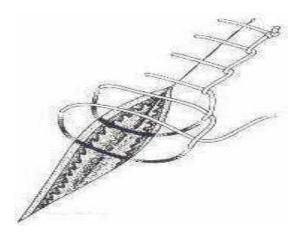


Fig. 14- The locked continuous suture

The intracutaneus suture (Fig. 15) is parallel to the skin surface and enters the skin at the beginning and only exists at the end. It takes an aesthetically pleasing form as it reduces the dimensions of the scar.

The purse string suture (Fig. 16) is only used for cilidrical, circular wounds such as the gastro-intestinal tract. It runs continously around the opening. Afterwards, the edges are pulled togather with a dressing forceps and the threads are

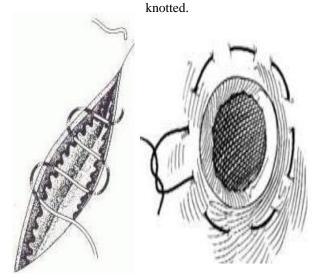
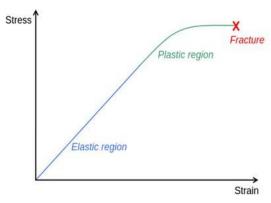
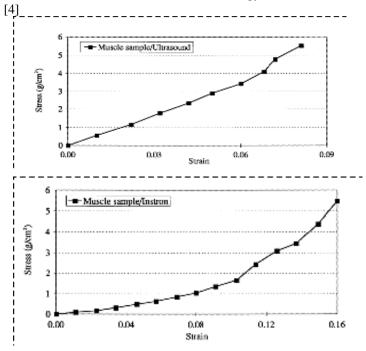
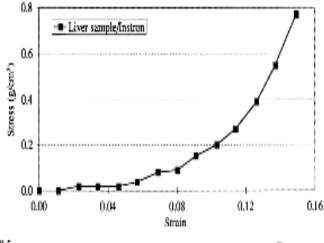



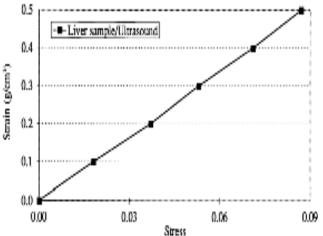
Fig. 15, 16 – The intracutaneus suture (left) and the purse-string suture (right)


IV. MICROBIOMECHANICS OF THE TISSUE

In order to understand the procedures occuring during a surgery, a comprehensive study of the microbiomechanics of the tissue is required. The forces that action upon specific tissues are: compressive (tend to deform the tissue by compressing them), flexure (tend to deform the tissue by bending them), torsion (tend to deform the tissue by twisting them), shear (result from combining the 3 forces mentioned above) and tensile (tend to deform the tissues by streching them). Deformation or strain can be described as being elastic (reversible) or plastic (irreversible). Out of all the mechanical properties it is important to mention the viscoelasticityintegrates both elasticity and viscosity - of the tissue determined by the Young Modulus (E) as it determines from what point a deformation becomes plastic and afterwards fractures (according to Hooke's Law $\sigma=E^*\varepsilon$, where σ is the applied stress and ε the resulting strain). (Graph. 1) [3]

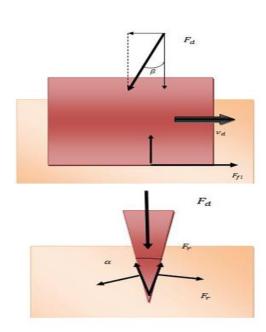
Graph 1 – general stress-strain curve


The stress-strain curves were further analyzed by numerous scientists to determine the Young Modulus for specific tissues. For accuracy and observation the researchers used two methods- with Ultrasound technology and Instron.



Graph. 2,3 – The stress-strain curve for the muscle tissue using both methods

www.ijntr.org



Graph. 4,5- The strain-stress curve for the liver tissue using both methods

Material	Ultimate tensile strength [Mpa]	Ultimate tensile strain [%]	Collagen (% dry weight)	Elastin (% dry weight)
Tendon	50-100	10-15	75-85	<3
Ligament	50-100	10-15	70-80	10-15
Aorta	0.3-0.8	50-100	25-35	40-50
Skin	1-20	30-70	60-80	5-10
Articular Cartilage	9-40	60-120	40-70	

Table 1- The ultimate tensile strength of different soft tissues [5]

Furthermore, we have developed a study of the incision of the scalpel through a soft tissue, where ecuations are included, in order to determine the force applied to the tissue. [6]

$$\begin{aligned} &(\text{Ox}) \cdot F_{fl} - F_{ft} \cos(\frac{\pi}{2} - \frac{\alpha}{2}) + F_{ft} \cos(\frac{\pi}{2} - \frac{\alpha}{2}) + F_{d} \cos(\frac{\pi}{2} - \beta) + F_{r} \cos(\frac{\alpha}{2}) - F_{r} \cos(\frac{\alpha}{2}) = 0 \end{aligned}$$

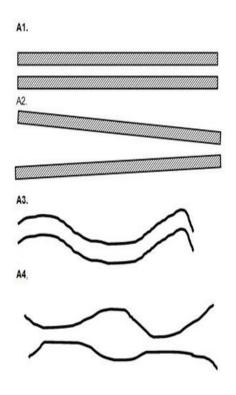
$$F_{r} \cos(\frac{\alpha}{2}) = 0 \tag{1}$$

(Oy)
$$F_d \cos \beta - 2F_{ft} \cos \frac{\alpha}{2} + 2F_r \cos \left(\frac{\pi}{2} - \frac{\alpha}{2}\right) = 0$$
 (2)

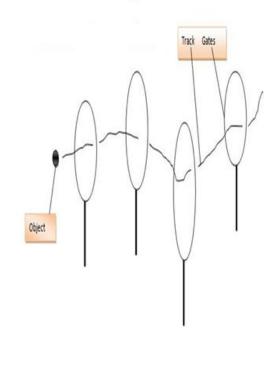
$$F_{fl} \cong \mu_{bt} F_d \cos \beta$$

$$F_{ft} \cong \mu_{bt}F_{r}$$

V. METHODS OF ANALIZING ACCURACY


After studying in depth the basic surgical tehniques, instruments and the biomechanics of several types of tissues, we have developed systems that are able to indentify the steadiness of a surgeon's hand. These systems track the motion of needles, scalpels and clamps.

Tracks of the scalpel are composed of two metallic bars, connected to a power source. The space between the bars may differ, from 1.5 centimeters to 0.2 centimeters. The surgeon is asked to effectuate an incision along the track. Whenever the metallic bar is being touched with the scalpel, an audio warning is emitted to inform that an error has been occurred.



Tracks of transportation work on the same principle, the only difference is that the surgeon is asked to pass an object (a small ball or a piece of cotton) through a multitude of forms, without touching the margins, or otherwise the same audio warning is emitted.

A.Tracks of the scalpel

B. Tracks of transportation with the clamps

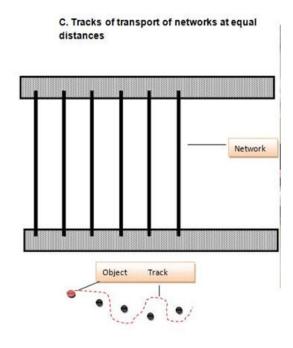


Fig.17- Experimenting on gradual tracks for the scalpel

11

Fig. 18- Performing experiments on tracks of transport at equal distances

VI. FUTURE PLANS

We plan on continuing working on this research project, despite the fact that we will be studying at different universities, in separated countries. We intend to improve the abovementioned devices that can measure the accuracy of the surgeon, as well as to come up with new ideas. Apart from the physical devices, we are currently working on creating a set of web and phone applications for the same purpose.

VII. ACKNOWLEDGEMENTS

We want to thank the National Institute of Research ICPE-CA, Bucharest and the Center for Initiating Young People in Scientific Research "Alexandru Proca" for the materials offered and for the places in which to conduct experiments. In particular, we are extremely grateful to our mentor, PhD Mircea Ignat for the moral support and guidance offered.

Additionally, we want to mention our class teacher, Claudia Preda, as she was very responsive and appreciative of our research theme, along with our high school "George Cosbuc".

VIII. CONCLUSION

We believe the prototypes that we developed could be of great use in teaching employee in hospitals and members of Medical Universities, as they can not only asses a surgeon's precision but also benefit the students by practicing and developing their surgical ability.

Our prospects are to analyze more of the mechanical parameters of the tissue and reflect this knowledge and thus broaden our spectrum of applications in order to be capable of sensing the pressure redirected to the tissue.

REFERENCES

[1]"Gandirea si indemanarea in chirurgie", Editura Academiei Romane, Piu Branzeanu, 1992

[2]"Basic Surgical Tehniques" Gyorgy Weber MD, PhD, med. habil.Janos Lantos MSc, PhD, Balazs Borsiczky MD, PhD,Andrea Ferencz MD, PhD, Gabor Jancso MD, PhD, Sandor Ferencz MD, Szabolcs Horvath MD,Hossein

Haddadzadeh Bahri MD, Ildiko Takacs MD, Borbala Balatonyi MD

- [3] "Young's Modulus Measurements of Soft Tissues with Application to Elasticity Imaging", Eric J. Chen, Jan Novakofski, W. Kenneth Jenkins and William D. O'Brien, Jr, 1996
- [4] "Biomechanics of Soft Tissue", G.A. Holzapfel, 2000 [5]"Mechanical properties of biological tissues", S. Pal, 2014
- [6]"Biomecanica Generala", Emil Budescu, 2013

BIOGRAPHY

Andra-Maria Ciutac had graduated from "George Cosbuc" Bilingual High School in 2017. She will continue her studies at Manchester University, where she will be studying medicine.

Carmen-Gabriela Popa also graduated from the same high school. She will be studying computer science at University Politehnica of Bucharest.

They have been members of the Center for Initiating Young People in Scientific Research "Alexandru Proca" since September 2015. They have previously

been working on a research project about the movements of the eye, obtaining numerous awards at national competitions. In May 2017, they represented Romania at the International Olympiad of Applied Sciences Intel ISEF, which took place in Los Angeles.

12 www.ijntr.org