
 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-3, Issue-4, April 2017 Pages 73-76

 73 www.ijntr.org

Abstract— The MapReduce Framework and Hadoop is the

platform for scalable analysis on large Datasets in recent years.

The primary concern in the Hadoop is to minimize the

completion length (i.e., makespan) and fixed number of

MapReduce jobs. This makes performance low and causes low

resource utilization. To overcome this, we propose a system

which dynamically allocates the map and reduce jobs, thus

leading to high resource utilization and reduced completion

length. The dynamic allocation of MapReduce jobs is achieved

by implementing Combiner Interface in MapReduce

Framework. The Proposed solution is implemented in the

Amazon EC2 Cluster in both Homogeneous and Heterogeneous

Clusters. The experimental results show the effectiveness and

robustness of our proposed system under simple workloads.

Index Terms— Map Reduce Slots, Hadoop Scheduling,

Hadoop Cluster, Reduced Makespan.

I. INTRODUCTION

In today’s world, ahuge amount of data is generated, it is

somewhere eating the storage space. At one side, the

technology gears up to provide more space and cloud

technologies are the requirement of storage technologies for

anenormous amount of data. The Huge amount of data is

generated and most of the companies analyze them and make

a huge amount of profits from that data. In a minute, $400

million Dollar sold on Alibaba, 4,39,000 page views on

Wikipedia, 1, 94,000 applications downloaded from the play

store, 38, 000 photos uploaded on the Instagram, 10 Million

advertisement’s, 4.1 million searches on Google around the

globe. Thus, in one year, the amount of data generated is

unimaginable. To analyze this much of huge amount of data

and store them we need special storage techniques and

processing techniques.Here comes to the picture, Hadoop [3].

It is the tool which is used to store huge amount of data and

analyze them.

Hadoop [3] is the open source software framework for

distributed storage and parallel processing of the huge data

sets through programming model MapReduce [2]. The

Hadoop consists of a storage part known as Hadoop

Distributed File System (HDFS) [2] and processing part

which is MapReduce programming model. The classic

Hadoop cluster relies on the Master- Slave Architecture, In

Dr V. Govindasamy,Associate Professor, Department of Information

Technology, Pondicherry Engineering College.

P. Siva Kumar, Student, Department of Information Technology,

Pondicherry Engineering College.

K. Puviarasu, Student, Department of Information Technology,

Pondicherry Engineering College.

K. Vijiya Kumar, PhD, Department of Computer Science, Pondicherry

Engineering College.

Hadoop cluster single Master node and multiple Slave nodes.

The Master node is known as the Namenode which is

responsible for the job allocation in the slave nodes. The

slave nodes in Hadoop cluster known as the DataNode which

is controlled by the NameNode. Hadoop splits the larger data

set files and distribute across the nodes in the cluster, then

transfer the code to thenodes to process the data in parallel[3].

This approach takes advantage of the parallel processing, this

allows data set process faster and more efficiently that relies

on the parallel file system. The Master node runs JobTracker,

which is responsible for scheduling the jobs and coordinating

the execution of each job. Each Slave node runs the

TaskTracker for the execution of MapReduce jobs. Hadoop is

a fault tolerant which is protected against the hardware

failure,if a node goes down, jobs are automatically redirected

to other nodes to make sure distributed system does not fail,

multiple copies of data are stored automatically in thecluster.

A. Scope:

The performance can be improved by the Dynamic

allocation of the MapReduce jobs [1], the transfer of data

between the map and reduce jobs is directly implied on the

performance of Hadoop cluster. If thetransfer of data between

the Map and Reduce job is minimal means resources in the

cluster will be more and automatically performance will be

improved.

In this work, we propose the Dynamic allocation of

MapReduce jobs and Improvement in makespan (i.e.,

completion length). The key idea of the new mechanism is

implementing a Combiner interface in the MapReduce,

which will decrease the transfer of data between Map and

Reduce. The Dynamic allocation of Map and Reduce jobs is

achieved by the implementing the MapReduce framework in

YARN, this system provides the dynamic allocation of

MapReduce jobs.

The rest of the paper is organised as follows, we explain

the YARN in section II. The design of the proposed solution

is explained in section III. The environment set-up is

explained in section IV and experimental results and graphs

are formulated in section V. Section VIconcludes the future

work. We conclude in Section VII.

II. YARN

In Hadoop 2.0 the new component is added that is called

the YARN (Yet Another Resource Negotiator) [3]. In YARN,

Cluster management is performed and data processing is

performed by the MapReduce. The architecture of the

Hadoop 2.0 is specified in Fig 1.

An Automatic Alignment and Grouping of

Hadoop Cluster

Dr V. Govindasamy,P. Siva Kumar, K. Puviarasu, K. Vijiya Kumar

An Automatic Alignment and Grouping of Hadoop Cluster

 74 www.ijntr.org

A. Resource Manager:

It is a Master and Global Resource Manager. The Resource

Manager has a scheduler, which is responsible for allocating

resources to the various applications running in the cluster,

according to constraints such as queue capacities and user

limits. The scheduler schedules based on the resource

requirements of each application.

Fig 1: YARN Architecture

B. Node Manager:

It is in the slave state. It is responsible for the Resource

Management on Data node and it is also responsible for the

both Application Manager and Container. It is also

responsible for the monitoring their resource usage (CPU,

memory, disk, network) and reporting the same to the

Resource Manager.

C. Application Manager:

Application Manager is responsible for the job execution

and it can run on any Data node. It is available in the Node

Manager and it will die automatically after job dies. It is also

responsible for allocating the Map and reducing tasks to

execute the job. Each Application Manager has responsibility

for negotiating appropriate resource containers from the

scheduler, tracking their status, and monitoring their

progress. From the system perspective, the Application

Manager runs as a normal container.

D. Container:

It is created in the Node Manager and also it takes the

details from the Resource Manager. In simple terms,

Container is a place where a YARN application is run. It is

available in each node. Application Manager negotiates

container with the scheduler (one of the components of

Resource Manager). Containers are launched by Node

Manager.

III. SYSTEM ARCHITECTURE

When dealing with the Big Data analysis the data should be

very accurate without any abnormalities. There are numerous

factors that affect the performance of the Hadoop cluster,

such as the both Hardware and Software while handling the

huge amount of the data. Both the main components of the

Hadoop i.e., HDFS [3] and MapReduce [2] plays a major role

in the performance of the cluster. By using these Diagnostics

[6], we can improve the performance in the cluster:

i) ConFig your cluster correctly

ii) Tune the number of maps and reduce tasks appropriately

iii) Write a Combiner

iv) Use the most appropriate and compact Writable type for

data set

For analyzing the enhancement performance in the Hadoop

cluster, this can be achieved by the enhancing the MapReduce

jobs. We need:-

i) Dataset: In order to evaluate the performance we need

the dataset which is big or huge data set through which we

can calculate the performance.

ii) Hadoop: Hadoop should be conFigd first because all the

MapReduce job will work on Hadoop framework because

Hadoop comes with HDFS(Hadoop Distributed File System)

which is used to stored such huge or large datasets and

MapReduce which is used to process this huge dataset.

iii) MapReduce jobs: MapReduce jobs can be developed

on any IDE through which we can develop the various

MapReduce jar file which willbe useful for the performance

evaluation.

In this work, we propose the new mechanism to

dynamically allocate the map and reduce slots. The main aim

of this mechanism is to improve the completion time of a

batch of map reduce in the Hadoop cluster. The key idea of

the new mechanism is the Combiner. A combiner is also

known as the semi reducer which accepts the inputs from the

map class and there passes them to the reducer class. The

combiner is used between the map class and the reducer class

to reduce the transfer of data between the map classes and

reduce class. The Architecture overview of proposed system

is shown in Fig 2.

A. Data Cleaning:

In proposed system, first, the user should upload the Input

Data Set and then Data set should be cleaned which means

that the data cleaning should be done. In Data cleaning

process the noisy data should be cleaned in the data set, the

unnecessary Data values are to be removed which are not

useful for the Analysis. Then pre-processed Data set is should

be sent to the next stage.

Fig 2: Overall System Architecture

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-3, Issue-4, April 2017 Pages 73-76

 75 www.ijntr.org

B. MapReduce with Combiner Interface:

A Combiner [4], is an optional class that operates by

accepting the inputs from the Map class and passes the output

key-value pairs to the Reducer class. The main function of a

Combiner is to summarize the map output records with the

same key-value, the output key-value collection of the

combiner is sent over the network to the actual Reducer task

as input. A combiner is also known as the Semi-reducer.

The data transfer between Mapper and Reducer can be

minimized by the implementing the Combiner in between

Mapper and Reducer. Generally, the output of the map task is

large and the data transferred to the reduce task is high. By

implementing the Combiner in the MapReduce framework it

offers a network congestion.

Fig 3: Map Reduce with Combiner

Working of the Combiner:

The working of the combiner is explained below:

1. A combiner does not have any predefined interface and

it must be implemented by the Reducer interface’s reduce ()

method.

2. A combiner operates on each and every map output key.

It must have the same output key-value types as the Reducer

class.

3. A combiner can produce summary information from a

large dataset because it replaces the original Map output.

C. Performance Evaluation:

The Performance Evaluation of the proposed system is

compared with the Fair scheduler of the Hadoop Scheduler

and then performance is evaluated in Hadoop Cluster in both

the Homogeneous and Heterogeneous Environments. The

comparison is done between the MapReduce and MapReduce

with Combiner Interface.

D. Analytical Graph:

The Results are obtained from the implementation which is

represented in Graph for easy understanding and analysis of

the system.

IV. ENVIRONMENT SET-UP

In environment setup we created the cluster by using the

CentOs, by using this we created the Master node (Name

node) and Slave node (Data node). In our problem we created

the one Master node and three slave nodes. The different

types of the Hadoop cluster is

i) Homogeneous Cluster:

In a Homogeneous Hadoop cluster [1] environment, where

all servers have the same computing and memory capacities.

In this environment, tasks from the same jobs will have the

same performance/execution time.

ii) Heterogeneous Cluster:

In a Heterogeneous Hadoop cluster [1] environment, where

all servers does not have the same computing and memory

capacities. In this environment, tasks from the same job may

have the different performance /execution time when running

on the different nodes. In this case task execution time highly

depends on a particular node where the task is running. A

job’s map task may run faster on a node which has faster CPU

per slot while it reduce tasks may experience shorter

execution time on the other nodes that have more memory per

slot. After the creation of the Cluster we will initialize the

Hadoop Cluster components like Name Node, Data Node,

YARN Components and HDFS.

V. RESULTS

In this work, we tested the various size of the Data sets [5]

for our proposed solution and we shows the comparison

between the existing work and proposed solution. The

performance improvement between Hadoop fair scheduler

and the proposed solution is shown in table and plotted in the

graph.

Table 1: Execution time of Sample Data Set

Execution time Milliseconds

With combiner 3837

Without combiner 111042

Fig 4: Execution time of Sample DataSet

We tested our Proposed System, in different data set sizes

which shows the performance variation, which states that i.e.,

An Automatic Alignment and Grouping of Hadoop Cluster

 76 www.ijntr.org

Table 2: Execution time of Different Sizes of Data Sets

 Milliseconds

Input size Combiner Without

combiner

1 GB 296278 420268

500 MB 115016 185020

if performance increases means automatically resource

utilization will also be high. In Fig 5 we shown the

Performance variation on our test cases with different input

sizes which are stated in the below table 2.

In Fig 4, shown the performance difference on the sample

data set with our proposed solution and existing system. In

table 2 we stated that the different sizes of data sets used for

test analysis for our proposed solution. For our test analysis

we implemented graph for easy analysis which is stated in Fig

5.

Fig 5: Performance Variation

VI. FUTURE ENHANCEMENTS

In future, we will implement the proposed system in the

complex workload and we can also further investigate in the

machine learning algorithm to find the fault nodes in the

cluster and reconstruction of the node in the cluster.

VII. CONCLUSION

The static allocation of Map Reduce jobs in the cluster

which directly implies on the performance time of the cluster.

We presented a dynamic allocation of Map Reduce slots in

the Hadoop cluster in heterogeneous environment,

implementing the Combiner Interface. The Combiner

Interface will reduce the transfer of the data between the Map

Reduce Interface. The transfer of data is less means resource

availability will be more, performance will be improved

automatically.

REFERENCES

[1] Yi. Yao, Jiayin Wang, Bo Sheng, Chiu C. Tan and Mi, “Self –Adjusting

Slot Configuration for Homogeneous and Heterogeneous Hadoop

Clusters”, IEEE Transactions on Cloud Computing, pp. 99-105, 2015.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters”, Communicatio of the ACM, vol. 51, no. 1, pp. 107-113,

2008.

[3] http://hadoop.apache.org/

[4] Prajesh P Anchalia, “Improved MapReduce k-Means Clustering

Algorithm with Combiner”, UKSim-AMSS 16th International

Conference on Computer Modelling and Simulation, 2014.

[5] https://aws.amazon.com/datasets/

[6] http://blog.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduc

e-performance/

http://hadoop.apache.org/
https://aws.amazon.com/datasets/
http://blog.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduce-performance/
http://blog.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduce-performance/

