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 

Abstract— With the rapid development of science and 

technology, the performance of current bearings in terms of 

variations in friction, wear, vibration, temperature rise, etc. is 

drawing considerable attention. The limited availability of 

characterization data and a lack of a priori knowledge 

concerning the probability distribution and trends in bearing 

performance have rendered it difficult to perform a statistical 

analysis on this topic. To overcome these limitations, in this 

paper, we adopt the fuzzy norm method, which integrates fuzzy 

theory with the norm method. We utilize the fuzzy norm 

method to assess the uncertainty in rolling bearing vibration 

performance, which can help to reveal the degree of variation in 

rolling bearing vibration performance despite the unknown 

probability distribution and trends, thereby allowing for 

accurate assessment of the vibration conditions of bearings. The 

results of an experimental investigation of a specific type of 

rolling bearing vibration-acceleration time series demonstrate 

the correctness and effectiveness of the proposed method. 

 
Index Terms—Rolling bearings, vibration performance, 

uncertainty, fuzzy theory, norm method. 

 

I. INTRODUCTION 

A rolling bearing is a key component for the proper 

operation of its host system. With developments in science 

and technology, new requirements have been placed on the 

performance variability of rolling bearings in terms of friction, 

wear, vibration, and temperature rise, among other factors. 

The performance reliability of a rolling bearing, such as its 

rotational accuracy, vibrations, friction torque fluctuations 

and lifetime, can directly affect the working performance and 

service life of its host [1-3]. 

Rolling bearings are widely used in many hosts, such as 

CNC machine tools, submarines, automobiles, bullet trains, 

aircrafts, and spacecrafts. In the late 90's of 20th century, with 

the continuous enhancement of host performance in many 

enterprises, especially in light car production enterprises, 

bullet train production enterprises, and CNC machine tool 

production enterprises, which take small, small and 

medium-sized rolling bearings as important components of 

hosts, higher requirements for the quality of rolling bearing 

vibration have been put forward, so that reliability and 

stability of the running condition of these hosts can be 

improved significantly. Obviously, the level of rolling bearing 

vibration performance has become the bottleneck of 

restricting the advancement of overall quality level of these 
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hosts. It follows that more attention must focus on study of 

rolling bearing vibration performance. From this point of view, 

the monitoring and evaluation of variations in rolling bearing 

performance is of great significance in engineering practice. 

Damage and wear of internal parts can cause bearing 

vibration, and conversely, bearing vibration may increase the 

susceptibility of the internal parts to damage and wear. A 

continuous cycle of this process may result in 

"vibration-induced damage to the bearing" and may cause 

variations in the bearing’s vibration performance. 

At present, experimental investigations of rolling bearing 

vibration performance have received limited research interest, 

and most related studies have primarily focused on influence 

factor analysis and fault diagnosis [4-11]. For example, an 

experimental study and comparative analysis of the vibration 

performances of steel ball bearings with or without CrC 

coatings has shown that the application of CrC coating to a 

steel ball bearing significantly reduces the vibration of the 

bearing, especially under high-speed and high-load conditions, 

thus improving the performance stability in terms of bearing 

vibration [6]. Another method for the dynamic assessment and 

diagnosis of rolling bearing vibration, known as the grey 

bootstrap method, yields an evaluation of the fundamental 

dynamic characteristics of the vibration of a rolling bearing 

based on 6 evaluation parameters. According to the evaluation 

results, the model also reveals the effect of the nature of the 

error on the bearing vibration and then lays a foundation for 

implementing the production process control of the rolling 

bearing vibration by revealing the source of the error in the 

manufacturing of the bearing parts [7]. Meanwhile, fault 

diagnosis strategies based on the relevance vector machine 

(RVM) approach and kernel principal component analysis 

methods improve the speed and accuracy of rolling bearing 

fault diagnosis in the case of small samples [8]. Moreover, the 

autoregressive model of modern spectral estimation can 

overcome the low resolution and poor variance of the classical 

power spectrum to enable the fault diagnosis of rolling bearing 

vibrations in the presence of noise and improve the diagnostic 

speed [9]. 

Measurement uncertainties can give rise to fluctuations in 

the range of values measured for a certain quantity with a 

given true value. The dynamic measurement uncertainty in 

bearing vibration values can be used to characterize the degree 

of variation in vibration performance. At present, only a few 

studies have researched methods of evaluating this dynamic 

measurement uncertainty [12-14]. For example, in the 

dynamic linear model with constant mean, the Bayesian 

uncertainty is first estimated; then, the components of the 

dynamic linear model are analysed, and the dynamic 

measurement uncertainty is evaluated by modelling the 

ergodic process [13]. In view of the shortcomings of slow 

convergence speed and unstable simulation results 
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encountered in Monte Carlo methods, a method of dynamic 

measurement uncertainty evaluation based on a quasi-Monte 

Carlo method has been proposed; this study began with the 

characteristics of a dynamic measurement system, and 

through the introduction of a low bias point, the authors were 

able to generate a quasi-random number sequence with a more 

uniform spatial distribution instead of a pseudo-random 

number sequence of the type used in Monte Carlo methods 

[14]. However, in these investigations, the uncertainty in the 

rolling bearing vibration performance was not taken into 

account, and therefore, in this study, a new, simple and 

economical method based on measured data collected by an 

acceleration sensor is presented to recognize and evaluate the 

vibration conditions of a rolling bearing. 

Because of the limited availability of characterization data 

and the lack of a priori knowledge concerning the probability 

distribution and trends in rolling bearing vibration 

performance, it is difficult to perform a statistical analysis on 

this topic. Therefore, the fuzzy norm method, which integrates 

fuzzy theory with the norm method, is adopted for the 

assessment of the uncertainty in rolling bearing vibration 

performance [15-18]. For example, a new method adopts a 

fuzzy practicable interval to characterize non-statistical 

uncertainty in dynamic measurement, and the method permits 

the uncertainty being estimated under the conditions that the 

number of measurements is very small and the probability 

distribution unknown. The feasibility of the method is 

validated using computer-simulation experiments [16]. In 

fuzzy time series analysis, the determination of the interval 

length is an important issue. The length of intervals has been 

intuitively determined in many researches recently done. The 

authors propose a new method based on the use of a single 

variable constrained optimization to determine the length of 

interval [17]. 

In order to make a further research on rolling bearing 

vibration performance, a novel research idea using the fuzzy 

method is proposed, and the fuzzy norm method can help to 

reveal the degree of variation in rolling bearing vibration 

performance given an unknown probability distribution and 

unknown trends, thereby allowing for the accurate 

assessment of the vibration conditions of bearings. 

II. MATHEMATICAL MODEL 

A. The fuzzy practicable interval of measured data 

The rolling bearing vibration performance under 

investigation is represented by a random variable x. During 

rolling bearing operation or experiments, the vibration 

performance is assumed to be regularly subjected to sample 

analysis through the acquisition of performance data for R 

time units. Xr represents the measured data for the rth time 

unit, and the rth time series is expressed as 

   RrnkkxX rr ,,2,1;,,2,1;              (1) 

where xr (k) represents the kth original data recorded, k is the 

number of current data points in Xr, n is the number of data 

points in Xr, r is the number of current time unit, and R is the 

number of time units.  

Fuzzy mathematics using membership functions is applied 

to investigate the intermediate transition laws of a fuzzy 

entity with a status that is changing from true to false or from 

false to true. The measured true value X0 is objective and 

unique. Thus, the set A is defined as 

 0XA                                       (2) 

where X0 is a single value. 

On the basis of set theory, the measured values xi (i=1, 2,…, 

n) and the set A satisfy the following binary-valued logic 

characteristic function GA(x): 
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where 1 indicates true and 0 indicates false; n is the total 

number of measurements. 

In fuzzy-set theory, the membership function of xi with 

respect to A indicates the degree of approximation from xi to 

A, which can be regarded as a transition, and the interval B of 

this transition can be represented by the membership function 

μ(x), as shown in Fig. 1. 

 
 
  0

0

2

1

Xx

Xx

x

x
x

i

i













                            (4) 

where μ1(x)[0,1] and μ2(x)[0,1]. The function μ(x) 

indicates that what degree the measured value xi conforms to 

the set A. 

The true value X0 is unknown, and the mathematical 

expectation (in statistical theory) or the fuzzy expectation (in 

fuzzy mathematics) can be used to estimate X0. 

In Fig. 1, xv is the value of x when μ(x)=1, which can be 

used to estimate the value of X0 as follows: 

  vx
xxX 

10 
                            (5) 

From Fig. 1, μ1(x) is an increasing function, whereas μ2(x) 

is a decreasing function. If λ[0,1] as the level λ then μAλ=λ , 

and the interval of x associated with the set A is obtained as 

follows: 

21LU ssxxUF                            (6) 

In (6), UFλ stands for the interval of x associated with the set 

A, xL and xU can be determined from (7) and (8), respectively, 

and s1 and s2 are two intervals on either side of X0 along the x 

axis that they can define the width of the membership 

function at the level λ, which can be represented as 

 
L1min xxλx                              (7) 

 
U2min xxλx                             (8) 

For the measured value xi, if λ=λ* is given, then UFλ=UFλ* is 

uniquely determined, i.e., the range of the scatter of the 

measured values xi about the true value X0 is given by UFλ*. 

In Fig. 1, B is the fuzzy interval, λ* is the optimal level, and 

UFλ* is the fuzzy practicable interval at the level λ*. Thus, the 

characteristic function GAλ(x) can be defined as  
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Equation (9) shows that usable values of x, which lie in the 

interval UFλ*, are represented by 1 (true), whereas those 

values that outside of this interval are unusable and are 

represented by 0 (false). 
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Fig. 1. The membership function and measured values 

 

According to the theory of measurement uncertainty, the 

expanded uncertainty of measured results can be 

characterized using the fuzzy practicable interval UFλ*. 

B. The theoretical value of λ* 

With the aid of fuzzy mathematics, λ* can be used to 

confirm the limits of the range of an entity, between one 

extreme and another. In reality, λ* can be regarded as a fuzzy 

number, and its fuzzy nature is at a maximum when λ* =0.5, 

representing both true and false. λ≥0.5 means that the set A 

contains the most usable x values. Therefore, in theory, λ* can 

be assumed be 0.5. In practical data analysis, generally, λ* 

=0.4~0.5. λ* =0.4 tends to correspond to the case in which n is 

fairly small. 

C. Parameter mapping 

The membership function in fuzzy mathematics can be 

represented by a probability density function in error theory. 

If the probability density function p=p(x) is known, then the 

linear transformation 

      minmaxmin pppxpx    minmax pp      (10) 

can be used to map p onto the interval [0,1]; thus, μ(x) can be 

obtained. According to (5) and (10), xv corresponds to pmax, 

which is the maximum value of the probability density 

function. 

Because xi is a fuzzy number, its value lies on the interval 

[0,1]. Therefore, the linear transformations 

   minmaxmin xxxxvv                  (11) 

     minmaxmin xxxxx                  (12) 

    minmax xxxxxx vv           (13) 

can be used to map xi onto the interval [0,1]; then, the 

measured value is represented by the fuzzy number τ(x), 

where xv corresponds to τv=0. 

On the interval [0,1], UFλ is expressed by ΦFλ, s1 and s2 are 

expressed by ξ1 and ξ2, respectively. Equation (6) can be 

expressed as 

21 ssUF   
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with 

21  F                            (15) 

Hence, Fig. 1 can be further enlarged to become Fig. 2. 

 

 
Fig. 2. Membership functions and mapping 

 

If the discrete values μ1j(τj) and μ2j(τj), j=1,2,..., are known, 

then μ1(τ) and μ2(τ) can be obtained using the following 

maximum-norm method. 

Define the ∞-norm as follows: 

2,1max 


jrr j                       (16) 

Next, construct the polynomials f1(τ) and f2(τ) 
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where f1(τ) and f2(τ) approximate the discrete values μ1j(τj) 

and μ2j(τj), respectively.  

If 

   jjjj fr  111        vj ,2,1                (19) 

   jjjj fr  222        nvvj ,1,              (20) 

then select al=al
* that satisfies 

1min r                                     (21) 

and select bl=bl
* that satisfies 

2min r                                    (22) 

Thus, the unknown coefficients al and bl can be computed. 

In (17) and (18), quite a high approximation accuracy can 

generally be achieved when the degree L of polynomials f1(τ) 

and f2(τ) is equal to 3 or 4. 

The constraint conditions of (21) and (22) can be given as 

follows: 

    0dd 1
'

1   ff                           (23) 

    0dd 1
'

1   ff                           (24) 

which reveal the monotonic nature of the membership 

functions. 

The approximation accuracy of the maximum-norm 

method is higher than that of the least-squares method. In 

addition, ξ1 and ξ2 can be solved using the following two 

equations: 
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The confidence level P is written as 
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In (27), |λ indicates that the operations are performed at the 

level λ. Equation (27) must satisfy 0≤P≤1. 

According to (27), the confidence level P is influenced by 

the level λ and the degree L of polynomials f1(τ) and f2(τ). In 

practical computations, the confidence level P is generally 

given. By giving preference to L=3, referring to the 

discussion of the theoretical value of the parameter λ* given in 

section 2.2, and adjusting λ to satisfy P, the optimal level λ* 

and the fuzzy practicable interval UFλ* can be determined for a 

given confidence level P. 

D. Establishment of linear membership functions 

There are two common types of methods for establishing 

membership functions, i.e., the right-square-graph estimation 

method and the sort linear estimation method. The latter is 

applied in this model. 

Sort the time series Xr in ascending order to construct a new 

data sequence X: 

  11 ;,,,,  iini xxxxxX                (28) 

The difference in value between adjacent data points is 

defined as 

01   iii xx                           (29) 

The smaller Δi is, the thicker is the distribution of the 

measured values. Conversely, as Δi becomes larger, the 

distribution becomes thinner. This behaviour illustrates that 

Δi is related to the distribution density of xi. 

In view of the difference value sequence Δi, the linear 

membership function is defined as 

  maxmin1  jjm                      (30) 

which is the approximate probability distribution density 

factor with 
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min min                               (32) 

According to fuzzy-set theory, let the maximum 

probability distribution density factor be mmax, let the xi 

corresponding to mmax be xv, and let the number i be v. If there 

are t repeated instances of mmax, then xv and v can be 

determined by the arithmetic mean algorithm. Thus, 

  vjmxp jjj  ,,2,11                       (33) 

  nvvjmxp jjj  ,1,,2                  (34) 

and μ1j(τj) and μ2j(τj) can then be obtained using (10)-(24). 

 

E. The steps for computing the expanded uncertainty 

(i) Begin with the measurement sample Xr={xr (k)}; 

k=1, 2,..., n; r=1, 2,..., R; 

(ii) Sort the time series Xr in ascending order to 

construct the new data sequence X={x1,..., xi,..., xn}; 

xi
 xi+1; 

(iii) After obtaining v and xv, compute p1j(xj)=mj (j=1, 

2,..., v) and p2j(xj)=mj (j=v,v+1,..., n) using (29)-(34); 

(iv) After computing μ1j(τj) (j=1, 2,..., v) and μ2j(τj) (j=v, 

v+1,..., n) using (10), compute η(x) and τ according 

to (12) and (13); 

(v) Under the constraint conditions of (23) and (24), 

establish the mathematical models for f1(τ) and 

f2(τ)in accordance with (17), (18) and (19)-(22); 

(vi) Obtain the membership functions μ1(x) and μ2(x) 

according to (17) and (18); 

(vii) Let the confidence level be P=90%, and let the 

degree of the polynomials be L=3; then, adjust λ, 

compute ξ1 and ξ2 at the level λ=λ* using (25) and 

(26), and obtain the fuzzy practicable interval UFλ*, 

which is the expanded uncertainty of the 

measurement values according to (14). 

III. CASE STUDIES 

A. Simulation tests 

The purpose of the simulation tests is to check the 

validity of the fuzzy norm method proposed in this paper. 

Suppose that the rolling bearing vibration performance 

obeys some known probability distributions, such as 

normal distribution, uniform distribution, triangular 

distribution, and Rayleigh distribution. A large number of 

measured values are simulated using the computer, and the 

expanded uncertainty of the measured values is estimated 

by the statistical method and the fuzzy norm method, 

respectively. In order to verify the effectiveness of the fuzzy 

norm method, the result estimated using the statistical 

method is considered as the true value and the relative error 

dU can therefore be defined by 

%100
||

d
True

True 


 

U

UU
U F                   (35) 

In (35), UTrue is the extended uncertainty estimated using 

the statistical method and UFλ* is the extended uncertainty 

estimated using the fuzzy norm method. 

 

Normal distribution 1024 measured values which obey 

the normal distribution with the standard deviation 

σ=0.0979 were generated by the computer simulation, as 

shown in Fig. 3. In this figure, x(k) is the kth measured value, 

and k is sequence number and k=1,2,…,1024. Let the 

confidence level P=99.73%=0.9973, then the expanded 

uncertainty of the measured values was estimated by the 

statistical method and the result was 

UTrue=6σ =0.5874, 

and the expanded uncertainty of the measured values was 

estimated using the fuzzy norm method and the result was 

UFλ*=0.50338. According to (35), the relative error between 

the results estimated by the two methods is dU =14.3%. 

 

Uniform distribution 1024 measured values which obey 

the uniform distribution with the standard deviation 

σ=0.28312 were generated by the computer simulation, as 

shown in Fig. 4. In this figure, x(k) is the kth measured value, 

and k is sequence number and k=1,2,…,1024. Let the 

confidence level P=100%=1, then the expanded uncertainty 

of the measured values was estimated by the statistical 

method and the result was 

UTrue=2   1250.P  =0.98076, 

and the expanded uncertainty of the measured values was 

estimated using the fuzzy norm method and the result was 

UFλ*=0.95731. According to (35), the relative error between 

the results estimated by the two methods is dU =2.39%. 
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Fig. 3. Normal distribution data sequence 
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Fig. 4. Uniform distribution data sequence 

 

Rayleigh distribution 1024 measured values which 

obey the Rayleigh distribution with the standard deviation 

σ=0.67974 were generated by the computer simulation, as 

shown in Fig. 5. In this figure, x(k) is the kth measured value, 

and k is sequence number and k=1,2,…,1024. Let the 

confidence level P=99.73% =0.9973, then the expanded 

uncertainty of the measured values was estimated by the 

statistical method and the result was 

UTrue=2×2.636σ =3.58359, 

and the expanded uncertainty of the measured values was 

estimated using the fuzzy norm method and the result was 

UFλ*=3.92305. According to (35), the relative error between 

the results estimated by the two methods is dU =9.47%. 

 

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000

k

x
(k

)

 
Fig. 5. Rayleigh distribution data sequence 

 

Triangular distribution 512×2=1024 measured values 

which obey the double half-triangular distribution with the 

standard deviation σ=0.207047 were generated by the 

computer simulation, as shown in Fig. 6. In this figure, x(k) 

is the kth measured value, and k is sequence number and 

k=1,2,…,1024. Let the confidence level P=100%=1, then 

the expanded uncertainty of the measured values was 

estimated by the statistical method and the result was 

UTrue=     P1662 1.01432, 

and the expanded uncertainty of the measured values was 

estimated using the fuzzy norm method and the result was 

UFλ*=1.02704. According to (35), the relative error between 

the results estimated by the two methods is dU =1.25%. 
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Fig. 6. Double half-triangular distribution data sequence 

 

The simulation tests show that with regard to the known 

probability distributions, the relative errors between the 

results estimated by the statistical method and the fuzzy 

norm method are very small. The maximum of the relative 

errors is 14.3% and the minimum of the relative errors is 

1.25%. This indicates that results estimated by the fuzzy 

norm method are in good agreement with results estimated 

by the statistical method, thus proving the validity of the 

fuzzy norm method proposed in this paper. 

It is worth noting that, in the simulation tests above, it is 

easy to see that if the measured values are of different 

probability distributions, different equations are required 

for estimating the expanded uncertainty using the statistical 

method. It means that the results estimated by the statistical 

method depend on the known probability distribution, and 

if the probability distribution of the measured values is 

unknown, the statistical method becomes invalid. This is a 

gap in the statistical method. However, the fuzzy norm 

method proposed in this paper does not depend on any 

probability distribution and allows probability distribution 

unknown. Therefore, the fuzzy norm method proposed in 

this paper can fill this gap in the statistical method. 

In fact, so far, the probability distribution of the rolling 

bearing vibration performance is still unknown. Thus, it is 

difficult to estimate the error produced by assessing the 

expanded uncertainty in rolling bearing vibration 

performance using the statistical method. 

B. Practical case 

An experiment to investigate rolling bearing 

performance was conducted on a custom-designed 

experimental platform. The experimental data (m/s2) for the 

vibration acceleration of the rolling bearing were measured 

using an acceleration sensor, whose measurement principle 

is illustrated in Fig. 7.The experiment was performed from 

November 8, 2010 to December 23, 2010. The operating 

conditions were as follows: the axial loading was 19.6 N, 

and the speed of the inner ring of the bearing was 1000 

r/min. The bearing data were collected regularly every day. 
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Fig. 7. Measurement principle of the acceleration sensor 

 

The experimental data were divided based on the day on 

which they were collected. The data from November 8th, 

13th, 18th, 23rd, and 28th and December 3rd, 8th, 13th, 

18th, and 23rd were selected. Therefore, the final data 

selected for analysis were collected every 5 days on a total 

of 10 different days. 

Moreover, the first 1000 data points collected on each of 

these days were used as the 10000 original vibration data 

points for the entire bearing experiment, i.e., the 

experimental data corresponded to a total of R=10 time 

units and each time unit corresponded to n=1000 data. The 

time series of the vibration information were thus obtained 

as shown in Fig. 8. 
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Fig. 8. Time series X1-X10 of vibration information 

 

As mentioned above, the confidence level P depends on 

the level λ and the degree L of the polynomials f1(τ) and f2(τ). 

In this case, P=90% and L=3 were chosen; thus, λ was 

adjusted to obtain λ* such that P=90% was satisfied. The 

results obtained for the optimal level λ* are shown in Table 1. 

 

Table 1.The optimal levels λ* corresponding to P=90% and L=3 in the 10 investigated time intervals. 

r 1 2 3 4 5 6 7 8 9 10 

λ* 0.5895 0.459 0.557 0.6 0.523 0.622 0.7135 0.521 0.728 0.55 

Following the steps for the computation of the expanded 

uncertainty presented in section 2.5, ξ1 and ξ2 were obtained 

for the levels λ=λ* as specified in the table; then, the 

measured true value X0 was also obtained, and the values of 

the daily upper and lower bounds XU and XL on the vibration 

acceleration of the rolling bearing were computed according 

to (13). The results of these computations are shown in Fig. 

9. 
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Fig. 9. The true values and upper and lower bounds of 

the 10 vibration-acceleration time series 

 

The expanded uncertainty of the vibration performance of 

the rolling bearing at the optimal level λ* was then obtained, 

as shown in Fig. 10. 
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Fig. 10. The expanded uncertainties of the 10 

vibration-acceleration time series 

 

By comparing Fig. 9 and Fig. 10, the following 

conclusions can be drawn:  

In Fig. 9, the estimated true values of the vibration 

acceleration of the rolling bearing remain essentially 

unchanged for all time series. 

For r =1~3 (i.e. from the first day to the third day), the 

rolling bearing vibration process appears rather stable 

relative to the corresponding estimated true values. 

Additionally, the fluctuation interval and the uncertainty in 

the vibration acceleration are also both quite stable; the 

uncertainties for these three days are 1.8531, 0.0776 and 

1.0257, respectively, indicating no remarkable variation in 

vibration performance.  

For r =4~7 (i.e., from the 4th day to the 7th day), the 

rolling bearing vibration process exhibits gradually 

increasing fluctuations relative to the corresponding 

estimated true values, i.e., the fluctuation interval and the 
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uncertainty both increase over time, reaching the maximum 

on the 7th day. The uncertainties for these 4 days are 3.1213, 

5.0954, 3.1609 and 3.1213, respectively, exhibiting a 

dramatic increase and indicating a remarkable variation in 

vibration performance compared with that of the first three 

days. 

For r =8~10, (i.e. from the 8th day to the 10th day), the 

rolling bearing vibration process again appears fairly stable 

relative to the corresponding estimated true values, with 

uncertainties of 1.4493, 3.5387 and 2.7066 for days 8, 9 and 

10, respectively. These results again indicate an 

insignificant variation in vibration performance.  

In Fig. 9, the estimated interval [XL, XU] represents the 

fluctuation interval of the vibration-acceleration time series 

relative to the true value X0. In Fig. 10, the expanded 

uncertainty UFλ* represents the uncertainty of the 

vibration-acceleration time series. From Fig. 9 and Fig. 10, 

it can be observed that the variation in rolling bearing 

vibration performance is a dynamic, nonlinear, complex 

and unknown process. 

Most importantly, in this experiment, the probability 

distribution and variational trends in the vibration 

acceleration of the rolling bearing were unknown. No a 

priori knowledge was available except the 

vibration-acceleration time series. Even when such 

knowledge is incomplete, the fuzzy norm method can be 

used to precisely evaluate the uncertainty in the vibration 

performance of a rolling bearing to accurately evaluate the 

vibration conditions of the bearing. 

IV. CONCLUSIONS 

Evaluation of uncertainty in rolling bearing vibration 

performance in this paper can be realized by the fuzzy norm 

method, without considering the probability distribution of 

rolling bearing vibration performance unknown. 

In this paper, four kinds of simulation tests show that 

under the condition of unknown probability distribution, it 

fully verified the effectiveness of the fuzzy norm method. In 

the practical case, the fuzzy norm method was adopted to 

evaluate the uncertainty of the vibration performance of a 

rolling bearing using a fuzzy practicable interval, i.e., the 

expanded uncertainty, in the case that the probability 

distribution and variational trends of the vibration 

acceleration of the rolling bearing are unknown. The 

magnitude of the expanded uncertainty can reveal the degree 

of variation in the vibration performance of a rolling bearing 

to allow for accurate evaluation of the vibration conditions of 

the bearing. 

In conclusion, the fuzzy norm method was applied to 

evaluate the uncertainty in rolling bearing vibration 

performance and to evaluate the uncertainty in the measured 

values of other system properties in this paper. 
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