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On Similar Partner Curves in Bishop Frames with
Variable Transformations

Faik BABADAG

Abstract—In this paper, we define a new family of curves and
call it a family of similar curves with variable transformation
according to the Bishop Frames . Also we give some
characterizations of this family and we give some theorems. We
obtain that similar curves with variable transformation with
vanishing curvatures form the families of similar curves with
variable transformation according to the Bishop Frames in
Esand E*.

Index Terms—Regular curves, Bishop frame, similar curve,
variable transformation.

I. INTRODUCTION

The curves are a part of our lives are the indispensable. For
example, heart chest film with X-ray curve, how to act is
important to us. Curves give the movements of the particle in
Physics.

Helical curves are very important type of curves. Because,
helices are among the simplest objects in the art, molecular
structures, nature, etc. For example, the path, arroused by the
climbing of beans and the orbit where the progressing of the
screw are a helix curves. Also, in medicine DNA molecule is
formed as two intertwined helices and many proteins have
helical structures, known as alpha helices. So, such curves are
very important for understand to nature. Therefore, lots of
author interested in the helices and they published many
papers in Euclidean 3 and 4 - space (See for details: [1] [2]).

Helix curve is defined by the property that the tangent
vector field makes a constant angle with a fixed direction. In
1802, M. A. Lancert first proposed a theorem and in 1845, B.
de Saint Venant first proved this theorem: "A necessary and
sufficient condition that a curve be a general helix is that the
ratio of curvature to torsion be constant" [7].

Recently, many studies have been reported on generalized
helices and inclined curves (Generalized helix is called as
inclined curve in n - dimensional Euclidean space " ,

n = 4) [1], [3],[6]. The Frenet frame is constructed for the
curve of 3-time continuously differentiable non-degenerate
curves. Curvature of the curve may vanish at some points on
the curve, that is,second derivative of the curve may be zero.
In this situation, we need an alternative frame in E® Therefore
in [8], Bishop defined a new frame for a curve and called it
Bishop frame which is well defined even when the curve has
vanishing second derivative in 3- dimensional Euclidean
space 3 . Similarly, Gokgelik et al. defined a new frame for a
curve and they called it parallel transport frame in E* [5]. The
parallel transport frame is an alternative frame defined a
moving frame. In [5], they consider a regular curve a(s)
parametrized by s and they defined a normal vector field V(s)
which is perpendicular to the tangent vector field T(s) of
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curve a(s) said to be relatively parallel vector field if its
derivative is tangential along the curve a(s) . They use the
tangent vector T (s) and three relatively parallel vector fields
to construct this alternative frame. They choose any
convenient arbitrary basis {M(s), M,(s), Ms(s)} of the
frame, which are perpendicular to T(s) at each point. The
derivatives of {M1(s), M2(s), M3(s)} only depend on (s) . It
is called as parallel transport frame along a curve because the
normal component of the derivatives of the normal vector
field is zero. The advantages of the parallel frame and the
comparable parallel frame with the Frenet frame in
3-dimensional Euclidean space E® was given and studied by
Bishop [8].

In this paper, we define similar curves with variable
transformation according to the Bishop Frame in Euclidean
space E* and give some characterizations of these curves. We
hope the results of this characterizations will be helpful to
mathematicians who are specialized on mathematical
modeling as well as other applications of interest.

Il. PRELIMINARIES

Let y:I € R — E® be arbitrary curve in the Euclidean
space E3. y is said to be of unit speed ( or parametrized by
arc-length function s) if ||y ~(s)|| = 1. Then the
derivatives of the Frenet frame of vy (Frenet-Serret formula);

T’ 0 K O[T
N'|=|-K 0 k[N
B’ 0 -k OILB

@)

where {T, N, B} is the Frenet frame of y and K, k are the
curvature and torsion of curve , respectively [10].

The Bishop frame or parallel transport frame is an
alternative approach to defining a moving frame that is
well-defined even when the curve has vanishing second
derivative. One can express parallel transport of an
orthonormal frame along a curve simply by parallel
transporting each component of the frame. The tangent vector
and any convenient arbitrary basis for the remainder of the
frame are used. Therefore, the Bishop (frame) formulas are
expressed as

T'"M10 ky k[T

My(=|-ki 0 o0][M

M| L=k, 0 0lLM;

where {T,M,,M,} is the Bishop Frame and ki, k, are
called first and second Bishop curvatures, respectively [8].

The relation between Frenet frame and Bishop frame is given
as follows:
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T"[r1 o 01T
Mi[=[0 cosO sinf||M;
M,| L0 —sinf® cos6lLM;

where 6(s)=arctan (k;)/(k1), ©(s)=d6(s)/ds and
K(s) = \/ki?(s) + k2?(s). Here Bishop curvatures are
defined by ki, = KcosO, k, = Ksinf. Where K, k denote
principal curvature functions according to Frenet frame of the
curve y [9]. We can parellel transport an orthonormal frame
along a curve simply by parallel transporting each component
of the frame. The derivatives of {M(s), M,(s)} only depend
on T(s) . Here the set {T(s),Mi(s),M,(s)} is called as
parallel transport frame and
ki(s) = (T'(s), Mi(s) ), ka(s) = (T (s), Ma(s) ), called as
parallel transport curvatures of the curve y.

Let w'® = w®(s):1 - E* be an arbitrary curve in the
four dimesional Euclidean space E*. Recall that the curve

wf” is said to be of unit speed (or parameterized by

arc-length function s) if

4)y ~ 4)y ~
(W)™ (), W) ()=,
where (, ) is the standard inner product of E* given by
(X, X ) =x1y1 + x2V2 + X3Y3 + X4)4

fOI’ eaCh X = (x1, xZ,x?,, X4, ), Y = (yl,yz,y3,y4). In
particular, the norm of a vector X € E* is given by
[IXII? = (X, X ). Let {T,N,B;,B,} be the Frenet frame along

the unit speed curve WOE‘”. Then T,N,B; and B, are the
tangent, the principal normal, first and second binormal
vectors of the curve w ™, respectively. If w " is a space
curve, then this set of orthogonal unit vectors, known as the

Frenet-Serret frame, has the following properties

T'(s) = KN(s)
N “(s) = —KT(s) +k B1(s)
B:1 (s) = —kN(s)+ 1t By(s)
B, (s) = —1B;

where K,k and t denote principal curvature functions

according to Frenet frame of the curve wy) [9]. The parallel
transport frame is an alternative frame defined a moving
frame. Curvature of the curve may vanish at some points on
the curve, that is, the i-th (1 < i < 4) derivative of the curve
may be zero. We can parellel transport an orthonormal frame
along a curve simply by parallel transporting each component

of the frame. The derivatives of {M4(s), M>(s), M3(s)}

only depend on (S) Here  the  set
{T(s),M(s), M,(s),M3(s)} is called as parallel transport

frame and  ki(s) = (T ~(s),My(s)), ko(s) =
(T “(),Ma(s)),
k3(s) =(T “(s),Ms(s)) called as parallel transport

curvatures of the curve w®

a -

Theorem. The alternative paralel transport frame equations
are given by

¥
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T 0 ky ky k3[T
M| _|=ki 0 0 0 ||M
My| " |-k, 0 0 0 ||M,
M l-ks 0 o o |lm;

where k4, k», k3 are principal curvature functions according

to paralel transport frame of the curve WOE4) and their

expression as follows:

ki, = K.cosOcosp
k, = K (—cosgsing + sinfcosy)
ks = K (singsing + cos¢psinbcos)

K(s) =k2+k2+ks?,
k(s) = —p ~+¢ “sind,
(s) = 6 "/sing

where K, k and 7 are principal curvature functions according

to Frenet frame of the curve wf” and 6, ¢, @ are angles

between vectors of parallel transport frame .

I1ll.  ON SIMILAR PARTNER CURVES IN BISHOP
FRAMES E3

Let v, (s,) and yg (sg) be curves in the three-dimensional
Euclidean space E* parameterized by arclengths s, and sz
with non-zero curvatures {k;, k2 } , {k1p, k25} and Bishop
Frames {T%, M{, M3}, {T#,MF,M%}, respectively. v, (s.)
and yg(sg) are called similar curves with variable
transformation Aﬁ if there exists a variable transformation

se = [ 25 (sg)dsg

of the arc-length s such that the tangent vectors are the
same for the two curves i.e.,

T =T* (2

for all corresponding values of parameters under the
transformation Aﬁ. Where A3 is arbitrary function of the

arclength [4], [9]. It is worth nothing that Aﬁ/lg =1. All

curves satisfying equation (2) are called a family of similar
curves with variable transformations. If we integrate the
equality (2) we obtain the following theorem:

Theorem. The position vectors of the family similar curves

with variable transformation according to Bishop frame in E3
can be written in the following form,

ve(sp) = J T (Sa (5,8)) dsg = fT“(Sa)/lgdsﬁ.
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Theorem. Let y=y(s) be an unit speed curve
parameterized by arc-length s according to Bishop frame in
E3. Suppose that y = y(¢) be another parametrization of the
curve with parameter ¢ = [ ki(s)ds. Then the tangent
vector T of y(s) satisfies a vector differential equation of
third order given by

[Z [T~ " +Q+fOT " +fT=0, @

where  f (@) = k2(9)/k1(), S =(an)/

do,

(T)

(T) =~ =(d°T)/de"

Proof. If we write derivatives given in (1) according to ¢, We
have

aTr
£=(k1M1+k2M2)k —M1+ Mz

dM 4

do == _le - _T
sz —_ — _
= kT =—fT
respectively, where  f(@) = k2(9)/k1(p) Then

corresponding matrix form of (1) can be given

TI
M1 == 1 0 0 [ ]
M, —f 0 0

If we substitute the first equation of new Frenet equation (4)
to second and third of (4), we have a vector differential
equation of third order (3) as desired.

Theorem. Lety,(s,) and yz(sg) be curves . Then y,(s,)
and yz (sg) are similar curves with variable transformation
according to Bishop frame in the three-dimensional
Euclidean space E3 if and only if the principal normal and
binormal vectors are the same for all curves

MY (s5) = M{(s)  (5)
M5 (sg) = M§(s,)  (6)

under the particular variable transformation

B _dsp _ kig
/‘La _dSa _klﬁ (7)
B _dsp _ ko
A Cdsg kg (8)

of the arc-lengths.

¥
Nr“(‘.xl_,g(?ll

Proof. Let Lety,(s,) and yz(sz) are similar curves with
variable transformation. Then differentiating the equality

TF =T¢
with respect to (sg) we have
kap (55 )M7 (s5) + kg (55 )M5 (Sﬁ)
[kla (Sa)Ml (Sa) + kZa(Sa)MZ (Sa)]
©)

dsg

where
( B dsa
kig(sp)M7(sp) = kla(sa)Ml(Sa)

Fe2s(50)M} (5) = Kaa(s)M3 (sa>d—S;.J

(&:) Let Lety,(s,) and yg(sg) be curves in the three-
dimensional Euclidean E? satisfying the equations (5) and

dsp _ kla

(6). If we multiply equation (ﬂg = ) by

dsg
kip (sﬂ), equation (3.8) by kyp (S[g) and mtegrate the
result with respect to sg we have

dsq
[ s ()M (55) = [ HraCsoms (50 T

ds,
[ s (s )M (55) = [ e G oM3 G5
(10)

From the equation (5), (6), (7) and (8), equation (9) takes the
form

[ Kip(sp)M! (55) + kap(sp)M5 (sp)

ds,
= [ Uoaa M (5 + e GOMS (1 7

which leads to (2) and the proof is complete.

Theorem. Lety,(s,)and yz(sz) be curves in the three-
dimensional Euclidean E* . Then y,(s,) andyg(ss) are
similar curves with variable transformation if and only if
ratios of k4, k5, k3 curvatures are the same for all curves

kz/g (Sﬁ) — kZa(Sa)

11
kig(sg)  k1a(sqe) (11)
under the particular variable transformations
2P = b8 _Kkia _ ko
@ dSa klﬂ kz[;

keeping equal total curvatures, i.e.,
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Jkip(sg)dspg = [k1a(Se)dsq =
(12)

(p(Sﬁ) = o (Sa)

of the arc-lengths.

Proof. =) Lety,(s,) and yz(sz) be regular curves in the
three- dimensional Euclidean E® . Then there exists a
variable transformation of the arc-length s such that the
normal and the binormal vectors are the same. Differentiating

the equations Mf (sg) = Mi (sa)

and Mzﬁ (sg) = M3 (s,) we have

ki (5)TP (5) = —kra (5T (50) T ds“

ds,
—leag (55 )M5 (55) = —heaa (50 ) M5 (52) -
B

which leads to the following two equations

klﬁ (S,[)’) - kla( a) dSa

kag (55) = kaa(sa) T2 ds“

(13

(14)

The variable transformation (11) is the equation (13) after
integration. Dividing the above two equations (13) and (14),
we obtain the equation (11) under the variable
transformations (12).

(&) Let v, (sq) and y (sg) be curves such that the equation
(112) is satisfied under the variable transformation (12) of the

arclengths. From theorem 3, the tangent vectors Tk (sﬁ)

And T“(s,) of the two curves satisfy vector differential
equations of third order as follows:

[ (1% +

a\’a)

1+ £, (0D (T O] ~+f, TG =0

(15)

f [ [ (6) +
| f5(Ep) ’ \
(L + £, 02T 0N ~+ £, TH(85) = 0,

(16)

Where

fa (ea) = kZﬁ (9[1’)

g (65)

Za( a)

ky (9) fﬂ(eﬁ)

The equation (11) causes

¥
Nr“(‘.xl_,g(?ll

fa (90() = fﬁ (9,3)

under the variable transformations 6,_65. So that the two
equation (15) and (16) under the equation (11) and the
transformation (12) are the same. Hence the solution is the
same, i.e., the tangent vectors are the same which completes
the proof of the theorem.

IV. ON SIMILAR PARTNER CURVES
FRAMES E*

IN BISHOP

Let w® = w™(s):1 - E* and ngA') = Wt§4)(s):1 - E* be
curves in the four-dimensional Euclidean space E* with
arclengths s, and Sp with  non-zero curvatures
(ki koo k3 } s {k1p, kop, k3p} and  Bishop  frames
(T, M¢, Mg, M§}, {TF, MP, M¥,ME3}, , respectively.

) ™ are called similar curves with variable

w,~ and wp

transformation /1'8 if there exists a variable

a
transformation[4],

o = [ 2 (sp)dsg

of the arc-lengths such that the tangent vectors are the
same for the two curves i.e.,

TF (s5) = T“(54)
for all corresponding values of parameters under the
transformation /1’2.

Theorem. Let w™(s) be a curve in the four-dimensional
Euclidean space E* parameterized by arc-length s . Provided
that w(¢) be another parametrization of the curve with
parameter ¢ = [ k;(s)ds. Then the unit tangent vector T of
w™(s) satisfies a vector differential equation of fourth order
as follows:

H% [T +(1+f°+ gZ)T]l”l .
|+ (%)]T =0 |

__ka(e) _ k3(e)
where f(9) = 17050 90 =30y
) ™ - . adrr
[T’] 0 ki ky k31T
Proof M} = _kl 0 00 Ml
lMJ -k, 0 0 0 ||M,
Myl l=ks 0 0 0 lIlM;

In the above matrix ,If we write derivaties according to
¢, We obtaine
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g—' _'A41 4‘ A42 4‘ A43

do
‘Z’:’;:—lez—T

Ve o 0®)
M= kT =
dM3__ —_

G = k3T— gT )

respectively, where

f(@) = k2(P)/k1(P), 9(P) = k3(P)/k1(P).

corresponding matrix form is

Then

T,, 0 1 f g T
Myl -1 0 o oll|M
M| " |-f o o ofl|[m,
]| =g o o ol|lm,

Theorem. Let w'¥(s,) and w[(;‘)(sﬁ) be curves . Then

w®(s,) and w[(;”(sﬁ) are similar curves with variable

transformation according to Bishop frame in the
four-dimensional Euclidean space E* if and only if

MY (sg) = M{(s,)
M5 (sg) = Mg (s,)
M5 (sg) = M§ (s,)

(19)

vectors are the same for all curves according to Bishop
Frame. Under the particular variable transformation

P = kia _ k2a _
dSa kl[} kzﬁ

of arc-lenths.

ksa

o (@)

Proof. Let w®(s,) and wp )(sﬁ) are similar curves with
variable transformation. Then differentiating the equality
T (sg) = T“(sg) with respect to sp it follows,

B B
(kg (sp)My (s5) + ko (55 )M5 (55) )
J +heag (s5)M5 (55) = Uera (s )ME (Spa) L
dsq
| e (5 IME (50) + e (5 IMS (5} 12
(1)

From (21), we have (19) and (20) immediately.
(=) Let wM(s,) and w[(;”(sﬁ) are similar curves with
variable transformation satisfying (19) and (20). By
multiplying with (19) ; k1, k2p, k3p } and differentiating
the results with respect to sg we obtain

¥
Nr“(‘.xl_,g(?ll

—k1p(5p) TP (5p) = —hera(5)T" (50) S22 ds“

_kZ/?(S/?)T (Sﬁ) - _kZa(Sa)T (Sa)

—k3B(SB)T (S,B) = _k3a(sa)T (Sa)

dsa

dsa

T (sp) =
[ Ueag(sp)MA (s + ez (s5)M5 ()
+h3g(s5)M5 (s5)]dsg
T%(sq) =
[ TerasM (s0) + kaa(sME (50)
+k3a(8)M3(52)]ds,

From (19), (20) and (21) we obtain

T%(sq) = TP (sp)
which means that w<®(s,) and w[(;”(s[;) are similarcurves

with variable transformation according to Bishop frame in
four-dimensional Euclidean space E*.

Let now consider w *(s,) and wg‘)(sﬁ) be curves such

that the equation (17) is satisfied under the variable
transformation

(P(Sﬁ) = fklﬁ(sﬁ) dsﬁ = fkla(sa)dsa =9 (Sq)

of the arclengths. From (17), the tangent vectors T (s, )
and TP (sg) of the two curves satisfy vector differential
equations of fourty order as follows:

[—— [(T°GBy) +

a)
| [+ £,(02)%+9, 04T 01" |

AN

[ 1
f5(8p)
[11+ £,(85))2+9,001T (85)]"

(95(6p))
+[fﬁ(‘9ﬁ)+<gﬁ ’ )] —0,
(405

[(T%(8p)) +

63 Www.ijntr.org



On Similar Partner Curves in Bishop Frames with Variable Transformations

Where

_ kZa (90() _ kZ[)’ (eﬁ)
fa(ea) - kl(x(ea{), fﬁ (Qﬁ) B klﬁ (0[;)

fa(ea) = f[)’ (eﬁ)

variable
90_, = Hﬂ
It means that the unit tangent vectors are the same which
completes the proof of the theorem.

under the transformations

Example. Let us consider, the Euler Spiral
Y(s) = (v1(5), v2(s), v3((s)) of E?

y1(s) = (3/5) [ sin(s® + 1)ds
y2(s) = (3/5) [ cos(s* + 1)ds
y3((s) = %f sds

Then the tangent vector T(s) of y(s) satisfies a vector
differential equation of third order given by

[GOIT ™ "+ A+ fOT]] "+ T =
0.

Proof. We are calculated this curve's curvature funcytion
with help of Mathematica Programme K =6s/5 and
k = —8s /5 The Frenet -Serret frame of the curve y = y(s)
may be written by the aid Mathematica Programme as
fallows

T(s) = ((3/5)sin(s* + 1), (3/5)cos(s* + 1), (4/5)),
N(s) = (cos(s* + 1), —sin(s* + 1), 0),
B(s) = ((4/5)sin(s* + 1), cos(s* + 1),—(3/5)).

To create a Bishop Frame to find the angle of rotation .y=y(s)
has the form

452
0(s) = —fkdsz—.
5
Transformation matrix for the curve
1 0 0
T 0 452 C4s?|rT
Nl = cos z sin z M,
B 0 s 452 452 | LM,
sin z cos z

T,M,, M, can be found

T(s) =T(s)

452 45?2
M;(s) = COSTN(S) + SLTLTB(S)

¥
N{‘.xlgcn
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 4s? 452
M,(s) = —sm?N(s) + cos?B(s).

Even , first curvature function according to Bishop frame of
curve. y=y(s) is calculated

ki(s) =(T ~(s), Ma(s) )
2

4s
= (6s/5)cos =

ka(s) = (T ~(s), Ma(s) )
2

4s
= (6s/5)cos =

If we write derivatives given in (3.3) according to s we
have
1

[[tan(4s/5)]' [

-

T = "+ (1 + [tan(4s/5)]*T]]
tanif4s/5)T = 0.

where, the tangent vector of y(s) satisfies is a vector
differential equation of third order.

CONCLUSION
In the three- dimensional Euclidean E® and the four-
dimensional Euclidean E* according to Bishop frame, the
similar curves are defined and some properties of these
curves are obtained. It is shown that this curves with
vanishing curvatures form the families of similar curves.
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