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 

Abstract- In this paper we design controller that combines an 

observer and a control to handle systems subject to actuator or 

sensor degradation (including complete failure). The observer 

contains a pre-filter, an adaptive law, and a modified 

Luenberger observer that achieves estimation of system state 

and estimation of conditions of actuator or sensor.  We have 

shown that if a set of differential Riccati inequatities (DRI) is 

satisfied then the system can be stabilized under actuator 

degradation. While in sensor degradation case if an Algebraci 

Riccati inequality (ARI) and a DRI are satisfied then the system 

is stabilized. 

 
Index Terms- Algebraic Riccati Inequality (ARI); Differential 

Riccati Inequaity (DRI); Linear Matrix Inequality (LMI); 

Differential Linear Matrix Inequalities (DLMI); Degradation. 

I. INTRODUCTION 

  Reliable control has been studied with one major 

assumption that the degradation of actuator or sensor is a 

priori, see for example [2], [4], [5], and [6]. We know that in 

some system this is not always the case, for example sensor 

and actuator array systems. In this paper we design an 

observer-based control system in which the function of 

observer has been extended not only performs system state 

estimation but, more importantly, estimates degraded 

condition of actuator or sensor. It is this idea that builds the 

observer that has three components: a pre-filter, an adaptive 

law, and a modified Luenberger observer. The pre-filter 

provides a filtered information from sensor output that is used 

for adaptive law to compute (or monitor) the condition of 

actuator or sensor. The modified Luenberger observer then 

gives an estimate of system state. Lastly, a control gain that is 

computed to compensate the actuator or sensor degradation 

according to the degraded information of actuator or sensor 

and system state from observer. 

In the case of sensor degradation the computation of control 

gain is straightforward once we had the estimation system 

state from modified Luenberger observer. However, in the 

presence of actuator degradation the design of control gain 

must compensate degraded actuator, which complicates the 

design. We have shown that if a set of DRI is satisfied, then 

the system can be stabilized in the actuator case. While in 

sensor case we need to satisfy an ARI and a DRI to stabilize 

the system. Block diagram in Figure 1 shows structure of the 

designed system.  

Note that we use diag((t)) to represent a diagonal matrix 
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with its element 1, 2, …., m and the dimension is 

determined by its contents, i.e., 
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Figure 1 Block diagram of system structure 

 

II. STUDY FOR SENSOR DEGRADATION 

1) 2.1 System Representation and Problem Description 

Consider the following system 
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                      (1) 

where the x(t)  R
n
 represents the control input, y(t)  R

v
 is 

the system output, and ys(t)  R
v
 is the true signal output of 

the system from sensors. The diagonal element of diag((t)), 

k(t)  R, k = 1, ..., v, is to represent the remaining function of 

the associated sensor. For example, if an sensor k = 0.80, 

then we say the sensor has 80% functioning. u(t)  R
m
 is the 

control signals that will be fed into the actuators with 

observed state ( )(ˆ tx ) as the feedback signals, i.e.  

)(ˆ)( txKtu                                   (2) 

with K the feedback gain.  

We now consider a state observer of following form: 

)(ˆ)(ˆ

))(ˆ))(ˆ()(()()(ˆ)(ˆ

txCty

txCtdiagtyLtButxAtx s





(3) 

where ( )(ˆ tx )  Rn is the state of observer, L is the observer 

gain to be designed, )(ˆ ty   Rv is an estimation of y(t) and 

the true sensor output ys(t) is estimated by )(ˆ))ˆ(( tydiag  . 

The construction of )(ˆ t  is such that (t) is estimated. 
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In here a class of sensor degradation functions will be 

defined. Consider k(t) for all k = 1, 2, …, v. We require k(t) 

satisfy the following properties: 

(1) k(t)  [0, 1].  

(2) 0
)(

0
lim 





 t

itk

t


where )()()( itktitkitk   , 

except at some time instance that k(t) jumps toward 

zero. 

The properties addressed above have the following 

interpretations: 

(1) k(t) = 0 means the actuator fails. k(t) = 1 means the 

actuator works properly. A degraded actuator will be 0 < 

k(t) < 1. 

(2) 0
)(

lim
0






 t

tik

t
 means that the degradation is a 

piecewise constant process. Under the process we allow 

k(t) to have jumps toward zero. 

We now state the observer and controller problem for the 

sensor degradation case as follows. 

 

Problem 1 Consider the system (1) with controller (2) and 

observer(3). Find, if possible, the controller and observer 

which comprises of a pre-filter, an adaptive law for )(ˆ t , and 

a state observer of )(ˆ tx  with gain L such that 

(A) )(ˆ t is an estimate of (t) and )()(ˆ tt    is bounded 

(which will always be the case if 1)(ˆ0  t
k
  since 

1)(0  t
k
  for all k = 1, …, v). 

(B) )(ˆ tx converges to x(t), i.e. 0))()(ˆ(lim 


txtx
t

. 

(C) The state observer is asymptotically stable. 

(D) The controller )(ˆ)( txKtu   is such that the 

closed-loop system with observer achieving (A), (B), 

and (C) is asymptotically stable. 

2.2 Main Results 

In this section main result for sensor degradation is 

addressed.  

Theorem 2 Problem 1 has a solution, if there exist 

a pre-filter (or error filter) 

xCdiagLLyxAx s
ˆ))ˆ((~~  (4) 

an adaptive law 
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v and -v are the maximum eigenvalues of 0
1




WS
T

W  

and 0 S
T

WW , respectively, for some positive 

definite symmetric matrices W and S. 

a state observer  

))(ˆ))(ˆ()(()()(ˆ)(ˆ txCtdiagtyLtButxAtx s  (6) 

and a controller  

)(ˆ)( txKtu   

such that the following conditions are achieved, 

(1) The matrices P and K satisfying 

0 TPP  

0)()(  BKAPPBKA T
(7) 

(2) The matrices Q, and L satisfying  

0 TQQ  

0)))ˆ((()))ˆ(((  CdiagLAQQCdiagLAQ T  (8) 

Proof. See Appendix A for proof. 

 

Remark 3 From (7) and (8), it is obvious that the 

computation for K and L is independent. The computation for 

K is straightforward by transforming to LMI [1], [3]. 

Likewise by transforming (8) from DRI to differential linear 

matrix inequalities (DLMIs) the solution method developed 

in [7] can be employed. 

2) …. 

III. STUDY OF ACTUATOR DEGRADATION 

3.1 System Representation and Problem Description 

 

Consider the following system 

 
)()(

)( ))(()()(

tCxty

tutdiagBtAxtx c



 
(9) 

where the x(t)  R
n
 is the state and y(t)  R

v
 is the output of 

the system. diag((t)) with its diagonal element k(t)  R, k = 

1, ..., m, represents the remaining function of the associated 

actuator. uc(t)  R
m
 is the computed control signals that will 

be fed into the actuators with observed state ( )(ˆ tx ) as the 

feedback signals, i.e.  

)(ˆ)( txKtuc                                        (10) 

with 
TT

mu
T

u
T

utcu ]  ....  2  1[)(   and K the feedback gain. 

We consider a state observer of following form: 

               ))(ˆ)(()(ˆ)(ˆ)(ˆ txCtyLtuBtxAtx             (11) 

where )(ˆ tx  is the estimated state, L is the observer gain to be 

designed, and )(ˆ tu  has the form: 

)())(ˆ(()(ˆ tutdiagtu c                     (12) 

Define the error )()(ˆ)(~ txtxtx   then we have  

cudiagBxLCAx ))
~

((~)(~   

where ))(())(ˆ())(
~

( tdiagtdiagtdiag   

The class of actuator degradation functions is defined in the 

same similar way as we have defined for sensor degradation 

function (t), which we will not address here. We state the 

control problem for the actuator degradation as follows. 

 

Problem 4 Consider the system (9) with controller (10) and 

state observer (11). Find, if possible, the controller with gain 
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K and observer which comprises a pre-filter, an adaptive law 

for )(ˆ t , and a state observer of )(ˆ tx  with gain L such that 

(A) )(ˆ t  is an estimate of (t) and )()(ˆ tt    is 

bounded (which will always be the case if 

1)(ˆ0  t
k

  since 1)(0  t
k

  for all k =1, …, m).  

(B) )(ˆ tx  converges to x, i.e. 0)ˆ(lim 


xx
t

. 

(C) The state observer is asymptotically stable, i.e. 


 C)( LCA . 

(D) The controller )(ˆ)( txKtcu   is such that the 

closed-loop system with observer achieving (A), (B), 

and (C) is asymptotically stable. 

 

3.2 Main Result 

In this section we present the main result for the system 

subject to actuator degradation. 

Theorem 5 Problem 4 has solution if there exist  

a pre-filter (or ef filter) 

))()(ˆ()()()( tytxCGteLCAte ff  (14) 

an adaptive law 
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m and -m are the maximum eigenvalues of 0
1




WS
T

W  

and 0 S
T

WW , respectively, for some positive 

definite symmetric matrices W and S.  

a state observer 
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and a controller  

)(ˆ)( txKtuc                                (17) 

such that the following conditions are achieved. 

1. .. 

2. The matrices P, K and a scalar  > 0 satisfying 

0 TPP  
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for 0c  and b > 0 that are picked by the designer. 

(2) The matrices Q, and L satisfying 

0 TQQ  
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for a given K, and 
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(3) Verify that there exists H satisfying 

0 THH  

0)()(
1

)()(  QHBBQH
a
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given Q, L, and scalar 0 bca  and cc  . 

(4)  The matrix G is such that  
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Note that such a  always exists. 

Proof. See Appendix B for proof. 

 

Remark 6  

(1) It is obvious that the computation of L in (19) is not 

independent of (18). However, the computation of (18) 

can actually be made alone. The technique to solve (18) 

can be found in [3], which is similar to the solution for 

(8) in Theorem 2. Once we had the matrices P and K, the 

computation for (19), (20), and (21) may be 

straightforward by following the similar procedure.  

(2) We note that to deal with actuator degradation is much 

more complex than the sensor degradation case. This 

may be due to that in sensor degradation case we receive 

the degraded information of sensor directly, while in 

actuator degradation we have only a filtered version of 

information. Thus to take care of this information 

discrepancy the pre-filter is designed in such a way that 

the discrepancy can be asymptotically demolished and 

thus the system is stabilized. This detail is seen in the 

proof.  

 

CONCLUSION 

In this paper we present an observer-based design to handle 

actuator or sensor degradation. The observer contains a 

pre-filter, an adaptive law, and a modified Luenberger 

observer that achieves estimation of system state and the 

estimation of conditions of actuator or sensor.  We have 

shown that if a set of differential Riccati inequatities (DRI) is 

satisfied then the system can be stabilized under actuator 

degradation. While in sensor degradation case an Algebraci 

Riccati inequality (ARI) and a DRI must be satisfied to 

stabilize the system.   

REFERENCE 

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix 

Inequalities in System and Control Theory. SIAM books, Philadelphia, 

1994. 

[2] M. Fujita and E. Shimenura, “Integrity Against Arbitrary 

Feedback-loop Failure in Linear Multivariable Control Systems,” 

Automatica, Vol. 24, No. 6, pp. 765-772, 1988. 

[3] C. C. Feng, “Design of Reliable Control Systems,” Ph.D. Dissertation, 

Case Western Reserve University, 1998. 

[4] A. Nazli Gundes, “Stabilizing Controller Design for Linear Systems 

with Sensor or Actuator Failures,” IEEE Transactions on Automatic 

Control, Vol. 39, No. 6, pp. 1224-1230, 1994. 



Design of Reliable Control Systems in the Presence of Actuator or Sensor Degradation 

 

                                                                                47                                                                 www.ijntr.org 

 

[5] R. J. Veillette, “Reliable Linear-quadratic State-feedback Control,” 

Automatica, Vol. 31, No. 1, pp. 137-143, 1995. 

[6] R. J. Veillette, J. V. Medanic, and W. R. Perkins, “Design of Reliable 

Control Systems,” IEEE Transactions on Automatic Control, Vol. 37, 

No. 3, pp. 290-304, March 1992. 

[7] F. Wu, Control of Linear Parameter Varying Systems, Ph.D. Thesis, 

University of California at Berkeley, Berkeley, CA, 1995. 

[8] C. C. Feng, S. Phillips, and M. Branicky, “Asymptotic Stability of 

Systems Described by Differential Equations Containing Piecewise 

Constant Functions,” submitted to System and Control Letters. 

A. Appendix A  

Proof. 

Consider the system (1) with sensor degradation, observer 

(3), and control signal in (2). 

Let error be xxx  ˆ~ , thus (1) can be rewritten as 

xBKxBKAx ~)(                         (A.1) 

The error )(~ tx  is given as 
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(A.2) 

where )()ˆ()
~

(  diagdiagdiag  .  The usual Lyapunov 

stability theory cannot be used due to the assumption that the 

sensor is subject to piecewise constant function. An extension 

of Lyapunov stability has been proved [3], [8] to guarantee 

the asymptotic stability of the system. By [8] we need to 

prove that, by defining a positive definite function, the sum of 

all increments of the positive definite function for all jump 

instance is bounded and the derivative of the function is 

always less than zero (not at jumps).  We define a positive 

definite quadratic function as 

   ~~
)(~~ 1TTT xPxxQxV           (A.3) 

for positive definite symmetric matrices Q, P, and  and a 

scalar  > 0.  

It can be shown that the total increment of function V of (A.3) 

for all jump instance is bounded above, see [3] for detail. The 

derivative of V is given  
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Substituting (A.1) and (A.2) into Error! Reference source 

not found. we have 
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rewritten as  
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To maintain stability we require  
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[3] proves that (A.9) can also be guaranteed by  
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where the v is number of sensors. v and -v are the maximum 

eigenvalues of 01  WSW T
 and 0 SWW T

, 

respectively, for some positive definite symmetric matrices 

W and S.  

B. Appendix B  

Proof. 

Consider the system (9) with the controller xKtuc
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We construct a pre-filter ef(t) and G satisfying 
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 in (B.3) is not known and thus ef may be used for 

approaching )(~ tx  asymptotically. Now the idea of proof of 

stability is similar to what we had for the previous proof in 

Appendix A. Let positive definite quadratic function be 

  ~~~~)( 1TTTT HxQxxPxV  

where H, Q, and P are positive definite symmetric matrices.  

R and  > 0. The upper bound of total increments of V for 

jump instance is shown in [3]. Thus the derivative of V is 
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Substituting (B.1), (B.3), and (B.4) into (B.5), we have 
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It can be shown that [3]  
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where c = a+ b and cc  . 

It is sufficient to require
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and  
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By applying the Schur complement [1], (B.7) can be 

equivalent written as 
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Note that (B.9) can be shown to be equivalent to  
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Proof.  By the Schur complement (B.9) can be equivalent 
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Sufficient condition (): This direction is readily proved.  

Necessary condition (): Given (B.13) and (B.14), there 

always exists a scalar  > 0 and GG   such that 
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 Hence from (B.10), (B.11), and (B.12) we conclude that 

(B.7) is equivalent to the following three matrix inequalities: 
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[3] proves that (B.8) can be implied by  
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where the m is number of actuators. m and -m are the 

maximum eigenvalues of 0
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
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W  and 0 S
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, respectively, for some positive definite symmetric matrices 

W and S.  


